带卷积层的 PRNet 用于降低 OFDM 信号的 PAPR

IF 0.3 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Masaya Ohta;Koichi Kubota
{"title":"带卷积层的 PRNet 用于降低 OFDM 信号的 PAPR","authors":"Masaya Ohta;Koichi Kubota","doi":"10.23919/comex.2024XBL0091","DOIUrl":null,"url":null,"abstract":"This research uses deep learning to address the high peak-to-average power ratio (PAPR) in orthogonal frequency division multiplexing (OFDM), which is critical for wireless communications. Although a PAPR-reducing network (PRNet), which is a deep learning model, can be used to suppress the PAPR, its computational cost is huge. In this research, the number of layers in a PRNet model is optimized and a fully connected layer is replaced with a convolution layer to reduce the computational load.","PeriodicalId":54101,"journal":{"name":"IEICE Communications Express","volume":"13 8","pages":"339-342"},"PeriodicalIF":0.3000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10554794","citationCount":"0","resultStr":"{\"title\":\"PRNet with Convolution Layer for PAPR Reduction of OFDM Signals\",\"authors\":\"Masaya Ohta;Koichi Kubota\",\"doi\":\"10.23919/comex.2024XBL0091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research uses deep learning to address the high peak-to-average power ratio (PAPR) in orthogonal frequency division multiplexing (OFDM), which is critical for wireless communications. Although a PAPR-reducing network (PRNet), which is a deep learning model, can be used to suppress the PAPR, its computational cost is huge. In this research, the number of layers in a PRNet model is optimized and a fully connected layer is replaced with a convolution layer to reduce the computational load.\",\"PeriodicalId\":54101,\"journal\":{\"name\":\"IEICE Communications Express\",\"volume\":\"13 8\",\"pages\":\"339-342\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10554794\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEICE Communications Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10554794/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE Communications Express","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10554794/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

这项研究利用深度学习来解决正交频分复用(OFDM)中峰均功率比(PAPR)过高的问题,这对无线通信至关重要。虽然可以使用深度学习模型 PAPR 降低网络(PRNet)来抑制 PAPR,但其计算成本巨大。本研究优化了 PRNet 模型的层数,并用卷积层取代了全连接层,以减少计算负荷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PRNet with Convolution Layer for PAPR Reduction of OFDM Signals
This research uses deep learning to address the high peak-to-average power ratio (PAPR) in orthogonal frequency division multiplexing (OFDM), which is critical for wireless communications. Although a PAPR-reducing network (PRNet), which is a deep learning model, can be used to suppress the PAPR, its computational cost is huge. In this research, the number of layers in a PRNet model is optimized and a fully connected layer is replaced with a convolution layer to reduce the computational load.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEICE Communications Express
IEICE Communications Express ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
33.30%
发文量
114
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信