使用结构最小二乘法的虚拟 ESPRIT 算法进行 DOA 估算

IF 0.3 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Kenta Noda;Nobuyoshi Kikuma;Kunio Sakakibara;Yoshiki Sugimoto
{"title":"使用结构最小二乘法的虚拟 ESPRIT 算法进行 DOA 估算","authors":"Kenta Noda;Nobuyoshi Kikuma;Kunio Sakakibara;Yoshiki Sugimoto","doi":"10.23919/comex.2024TCL0015","DOIUrl":null,"url":null,"abstract":"Virtual-ESPRIT Algorithm (VESPA), which is a direction-of-arrival (DOA) estimation method using higher-order statistics (fourth-order cumulants), is said to be significant for DOAs estimation of non-Gaussian signals. The authors propose SLS-VESPA, which is VESPA with the SLS (Structured Least Squares) method. Computer simulations show improved characteristics of the SLS-VESPA compared to the conventional TLS (Total Least Squares)-VESPA.","PeriodicalId":54101,"journal":{"name":"IEICE Communications Express","volume":"13 8","pages":"307-310"},"PeriodicalIF":0.3000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10494922","citationCount":"0","resultStr":"{\"title\":\"DOA Estimation by Virtual-ESPRIT Algorithm Using Structured Least Squares Method\",\"authors\":\"Kenta Noda;Nobuyoshi Kikuma;Kunio Sakakibara;Yoshiki Sugimoto\",\"doi\":\"10.23919/comex.2024TCL0015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Virtual-ESPRIT Algorithm (VESPA), which is a direction-of-arrival (DOA) estimation method using higher-order statistics (fourth-order cumulants), is said to be significant for DOAs estimation of non-Gaussian signals. The authors propose SLS-VESPA, which is VESPA with the SLS (Structured Least Squares) method. Computer simulations show improved characteristics of the SLS-VESPA compared to the conventional TLS (Total Least Squares)-VESPA.\",\"PeriodicalId\":54101,\"journal\":{\"name\":\"IEICE Communications Express\",\"volume\":\"13 8\",\"pages\":\"307-310\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10494922\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEICE Communications Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10494922/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE Communications Express","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10494922/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

Virtual-ESPRIT 算法(VESPA)是一种使用高阶统计量(四阶积)的到达方向(DOA)估计方法,据说对非高斯信号的 DOA 估计很有意义。作者提出了 SLS-VESPA,即采用 SLS(结构最小二乘法)方法的 VESPA。计算机模拟显示,与传统的 TLS(全最小二乘法)-VESPA 相比,SLS-VESPA 具有更好的特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DOA Estimation by Virtual-ESPRIT Algorithm Using Structured Least Squares Method
Virtual-ESPRIT Algorithm (VESPA), which is a direction-of-arrival (DOA) estimation method using higher-order statistics (fourth-order cumulants), is said to be significant for DOAs estimation of non-Gaussian signals. The authors propose SLS-VESPA, which is VESPA with the SLS (Structured Least Squares) method. Computer simulations show improved characteristics of the SLS-VESPA compared to the conventional TLS (Total Least Squares)-VESPA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEICE Communications Express
IEICE Communications Express ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
33.30%
发文量
114
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信