Qianqian Chai, Yan Lin*, Yifang Zhu*, Jinming Liu, Xiaodi Shi, Xing Jiang, Xinchen Lu, Lailai Yan, Junfeng Zhang, Tong Zhu, Jesus A. Araujo and Xinghua Qiu*,
{"title":"尿碘代谢组学是了解环境诱导甲状腺激素代谢变化的新工具","authors":"Qianqian Chai, Yan Lin*, Yifang Zhu*, Jinming Liu, Xiaodi Shi, Xing Jiang, Xinchen Lu, Lailai Yan, Junfeng Zhang, Tong Zhu, Jesus A. Araujo and Xinghua Qiu*, ","doi":"10.1021/acs.estlett.4c0042810.1021/acs.estlett.4c00428","DOIUrl":null,"url":null,"abstract":"<p >In this study, we developed a novel iodine metabolomic method and identified 42 iodine-containing compounds in urine. Using <i>in vitro</i> experiments, we confirmed that these compounds were degradation metabolites of thyroid hormones (THs) and may be used to understand the peripheral metabolism of THs. These metabolites were then measured in urine samples collected in a natural experiment in 26 healthy adults experiencing substantial environmental changes after traveling from Los Angeles to Beijing. Despite the absence of significant alterations in iodine intakes or circulating TH levels, the level of urinary TH metabolites significantly decreased by ≤52.4% in Beijing, in association with exposure to polycyclic aromatic hydrocarbons and metals and the subsequent oxidative–antioxidative responses. All of these changes were reversed after the participants had returned to Los Angeles. These results support the promising use of iodine metabolomics to detect early TH metabolic alteration and shed light on novel mechanisms for environmental impacts on TH homeostasis.</p>","PeriodicalId":37,"journal":{"name":"Environmental Science & Technology Letters Environ.","volume":"11 8","pages":"805–811 805–811"},"PeriodicalIF":8.9000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Urinary Iodine Metabolomics as a Novel Tool for Understanding Environmentally Induced Thyroid Hormone Metabolic Alteration\",\"authors\":\"Qianqian Chai, Yan Lin*, Yifang Zhu*, Jinming Liu, Xiaodi Shi, Xing Jiang, Xinchen Lu, Lailai Yan, Junfeng Zhang, Tong Zhu, Jesus A. Araujo and Xinghua Qiu*, \",\"doi\":\"10.1021/acs.estlett.4c0042810.1021/acs.estlett.4c00428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In this study, we developed a novel iodine metabolomic method and identified 42 iodine-containing compounds in urine. Using <i>in vitro</i> experiments, we confirmed that these compounds were degradation metabolites of thyroid hormones (THs) and may be used to understand the peripheral metabolism of THs. These metabolites were then measured in urine samples collected in a natural experiment in 26 healthy adults experiencing substantial environmental changes after traveling from Los Angeles to Beijing. Despite the absence of significant alterations in iodine intakes or circulating TH levels, the level of urinary TH metabolites significantly decreased by ≤52.4% in Beijing, in association with exposure to polycyclic aromatic hydrocarbons and metals and the subsequent oxidative–antioxidative responses. All of these changes were reversed after the participants had returned to Los Angeles. These results support the promising use of iodine metabolomics to detect early TH metabolic alteration and shed light on novel mechanisms for environmental impacts on TH homeostasis.</p>\",\"PeriodicalId\":37,\"journal\":{\"name\":\"Environmental Science & Technology Letters Environ.\",\"volume\":\"11 8\",\"pages\":\"805–811 805–811\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science & Technology Letters Environ.\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.estlett.4c00428\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science & Technology Letters Environ.","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.estlett.4c00428","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Urinary Iodine Metabolomics as a Novel Tool for Understanding Environmentally Induced Thyroid Hormone Metabolic Alteration
In this study, we developed a novel iodine metabolomic method and identified 42 iodine-containing compounds in urine. Using in vitro experiments, we confirmed that these compounds were degradation metabolites of thyroid hormones (THs) and may be used to understand the peripheral metabolism of THs. These metabolites were then measured in urine samples collected in a natural experiment in 26 healthy adults experiencing substantial environmental changes after traveling from Los Angeles to Beijing. Despite the absence of significant alterations in iodine intakes or circulating TH levels, the level of urinary TH metabolites significantly decreased by ≤52.4% in Beijing, in association with exposure to polycyclic aromatic hydrocarbons and metals and the subsequent oxidative–antioxidative responses. All of these changes were reversed after the participants had returned to Los Angeles. These results support the promising use of iodine metabolomics to detect early TH metabolic alteration and shed light on novel mechanisms for environmental impacts on TH homeostasis.
期刊介绍:
Environmental Science & Technology Letters serves as an international forum for brief communications on experimental or theoretical results of exceptional timeliness in all aspects of environmental science, both pure and applied. Published as soon as accepted, these communications are summarized in monthly issues. Additionally, the journal features short reviews on emerging topics in environmental science and technology.