{"title":"评估新型三维打印个性化钛网在牙槽骨增量中的应用:回顾性研究。","authors":"Chang Liu, Jinmeng Li, Shuo Zhang, Hanyu Xiao, Yanying Wang, Jian Zhang","doi":"10.1111/cid.13372","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Objective</h3>\n \n <p>To assess the clinical and radiographic outcomes of alveolar ridge augmentation using a novel three-dimensional printed individualized titanium mesh (3D-PITM) for guided bone regeneration (GBR).</p>\n </section>\n \n <section>\n \n <h3> Materials and methods</h3>\n \n <p>Preoperative cone-beam computed tomography (CBCT) was used to evaluate alveolar ridge defects, followed by augmentation with high-porosity 3D-PITM featuring circular and spindle-shaped pores. Postoperative CBCT scans were taken immediately and after 6 months of healing. These scans were compared with preoperative scans to calculate changes in bone volume, height, and width, along with the corresponding resorption rates. A statistical analysis of the results was then conducted.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>A total of 21 patients participated in the study, involving alveolar ridge augmentation at 38 implant sites. After 6 months of healing, the average bone augmentation volume of 21 patients remained at 489.71 ± 252.53 mm<sup>3</sup>, with a resorption rate of 16.05% ± 8.07%. For 38 implant sites, the average vertical bone increment was 3.63 ± 2.29 mm, with a resorption rate of 17.55% ± 15.10%. The horizontal bone increment at the designed implant platform was 4.43 ± 1.85 mm, with a resorption rate of 25.26% ± 15.73%. The horizontal bone increment 2 mm below the platform was 5.50 ± 2.48 mm, with a resorption rate of 16.03% ± 9.57%. The main complication was exposure to 3D-PITM, which occurred at a rate of 15.79%.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>The novel 3D-PITM used in GBR resulted in predictable bone augmentation. Moderate over-augmentation in the design, proper soft tissue management, and rigorous follow-ups are beneficial for reducing the graft resorption and the incidence of exposure.</p>\n </section>\n </div>","PeriodicalId":50679,"journal":{"name":"Clinical Implant Dentistry and Related Research","volume":"26 6","pages":"1111-1125"},"PeriodicalIF":3.7000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of the application of a novel three-dimension printing individualized titanium mesh in alveolar bone augmentation: A retrospective study\",\"authors\":\"Chang Liu, Jinmeng Li, Shuo Zhang, Hanyu Xiao, Yanying Wang, Jian Zhang\",\"doi\":\"10.1111/cid.13372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Objective</h3>\\n \\n <p>To assess the clinical and radiographic outcomes of alveolar ridge augmentation using a novel three-dimensional printed individualized titanium mesh (3D-PITM) for guided bone regeneration (GBR).</p>\\n </section>\\n \\n <section>\\n \\n <h3> Materials and methods</h3>\\n \\n <p>Preoperative cone-beam computed tomography (CBCT) was used to evaluate alveolar ridge defects, followed by augmentation with high-porosity 3D-PITM featuring circular and spindle-shaped pores. Postoperative CBCT scans were taken immediately and after 6 months of healing. These scans were compared with preoperative scans to calculate changes in bone volume, height, and width, along with the corresponding resorption rates. A statistical analysis of the results was then conducted.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>A total of 21 patients participated in the study, involving alveolar ridge augmentation at 38 implant sites. After 6 months of healing, the average bone augmentation volume of 21 patients remained at 489.71 ± 252.53 mm<sup>3</sup>, with a resorption rate of 16.05% ± 8.07%. For 38 implant sites, the average vertical bone increment was 3.63 ± 2.29 mm, with a resorption rate of 17.55% ± 15.10%. The horizontal bone increment at the designed implant platform was 4.43 ± 1.85 mm, with a resorption rate of 25.26% ± 15.73%. The horizontal bone increment 2 mm below the platform was 5.50 ± 2.48 mm, with a resorption rate of 16.03% ± 9.57%. The main complication was exposure to 3D-PITM, which occurred at a rate of 15.79%.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>The novel 3D-PITM used in GBR resulted in predictable bone augmentation. Moderate over-augmentation in the design, proper soft tissue management, and rigorous follow-ups are beneficial for reducing the graft resorption and the incidence of exposure.</p>\\n </section>\\n </div>\",\"PeriodicalId\":50679,\"journal\":{\"name\":\"Clinical Implant Dentistry and Related Research\",\"volume\":\"26 6\",\"pages\":\"1111-1125\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Implant Dentistry and Related Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cid.13372\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Implant Dentistry and Related Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cid.13372","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Assessment of the application of a novel three-dimension printing individualized titanium mesh in alveolar bone augmentation: A retrospective study
Objective
To assess the clinical and radiographic outcomes of alveolar ridge augmentation using a novel three-dimensional printed individualized titanium mesh (3D-PITM) for guided bone regeneration (GBR).
Materials and methods
Preoperative cone-beam computed tomography (CBCT) was used to evaluate alveolar ridge defects, followed by augmentation with high-porosity 3D-PITM featuring circular and spindle-shaped pores. Postoperative CBCT scans were taken immediately and after 6 months of healing. These scans were compared with preoperative scans to calculate changes in bone volume, height, and width, along with the corresponding resorption rates. A statistical analysis of the results was then conducted.
Results
A total of 21 patients participated in the study, involving alveolar ridge augmentation at 38 implant sites. After 6 months of healing, the average bone augmentation volume of 21 patients remained at 489.71 ± 252.53 mm3, with a resorption rate of 16.05% ± 8.07%. For 38 implant sites, the average vertical bone increment was 3.63 ± 2.29 mm, with a resorption rate of 17.55% ± 15.10%. The horizontal bone increment at the designed implant platform was 4.43 ± 1.85 mm, with a resorption rate of 25.26% ± 15.73%. The horizontal bone increment 2 mm below the platform was 5.50 ± 2.48 mm, with a resorption rate of 16.03% ± 9.57%. The main complication was exposure to 3D-PITM, which occurred at a rate of 15.79%.
Conclusion
The novel 3D-PITM used in GBR resulted in predictable bone augmentation. Moderate over-augmentation in the design, proper soft tissue management, and rigorous follow-ups are beneficial for reducing the graft resorption and the incidence of exposure.
期刊介绍:
The goal of Clinical Implant Dentistry and Related Research is to advance the scientific and technical aspects relating to dental implants and related scientific subjects. Dissemination of new and evolving information related to dental implants and the related science is the primary goal of our journal.
The range of topics covered by the journals will include but be not limited to:
New scientific developments relating to bone
Implant surfaces and their relationship to the surrounding tissues
Computer aided implant designs
Computer aided prosthetic designs
Immediate implant loading
Immediate implant placement
Materials relating to bone induction and conduction
New surgical methods relating to implant placement
New materials and methods relating to implant restorations
Methods for determining implant stability
A primary focus of the journal is publication of evidenced based articles evaluating to new dental implants, techniques and multicenter studies evaluating these treatments. In addition basic science research relating to wound healing and osseointegration will be an important focus for the journal.