假孢子菌的物种多样性。

Fungal systematics and evolution Pub Date : 2024-06-01 Epub Date: 2024-04-11 DOI:10.3114/fuse.2024.13.03
J Z Groenewald, Y Y Chen, Y Zhang, J Roux, H-D Shin, R G Shivas, B A Summerell, U Braun, A C Alfenas, A H Ujat, C Nakashima, P W Crous
{"title":"假孢子菌的物种多样性。","authors":"J Z Groenewald, Y Y Chen, Y Zhang, J Roux, H-D Shin, R G Shivas, B A Summerell, U Braun, A C Alfenas, A H Ujat, C Nakashima, P W Crous","doi":"10.3114/fuse.2024.13.03","DOIUrl":null,"url":null,"abstract":"<p><p>Species of <i>Pseudocercospora</i> are commonly associated with leaf and fruit spots on diverse plant hosts in sub-tropical and tropical regions. <i>Pseudocercospora</i> spp. have mycosphaerella-like sexual morphs, but represent a distinct genus in <i>Mycosphaerellaceae</i> (<i>Mycosphaerellales</i>, <i>Dothideomycetes</i>). The present study adds a further 29 novel species of <i>Pseudocercospora</i> from 413 host species representing 297 host genera occurring in 60 countries and designates four epitypes and one lectotype for established names. This study recognises 329 species names, with an additional 69 phylogenetic lineages remaining unnamed due to difficulty in being able to unambiguously apply existing names to those lineages. To help elucidate the taxonomy of these species, a phylogenetic tree was generated from multi-locus DNA sequence data of the internal transcribed spacers and intervening 5.8S nuclear nrRNA gene (ITS), partial actin (<i>actA</i>), and partial translation elongation factor 1-alpha (<i>tef1</i>), as well as the partial DNA-directed RNA polymerase II second largest subunit (<i>rpb2</i>) gene sequences. Novel species described in this study include those from various countries as follows: <b>Australia</b>, <i>Ps. acaciicola</i> from leaf spots on <i>Acacia</i> sp., <i>Ps. anopter</i> from leaf spots on <i>Anopterus glandulosus</i>, <i>Ps. asplenii</i> from leaf spots on <i>Asplenium dimorphum</i>, <i>Ps. australiensis</i> from leaf spots on <i>Eucalyptus gunnii</i>, <i>Ps. badjensis</i> from leaf spots on <i>Eucalyptus badjensis</i>, <i>Ps. erythrophloeicola</i> from leaf spots on <i>Erythrophleum chlorostachys</i>, <i>Ps. grevilleae</i> from leaf spots on <i>Grevillea</i> sp., <i>Ps. lophostemonigena</i> from leaf spots on <i>Lophostemon confertus</i>, <i>Ps. lophostemonis</i> from leaf spots on <i>Lophostemon lactifluus</i>, <i>Ps. paramacadamiae</i> from leaf spots on <i>Macadamia integrifolia</i>, <i>Ps. persooniae</i> from leaf spots on <i>Persoonia</i> sp., <i>Ps. pultenaeae</i> from leaf spots on <i>Pultenaea daphnoides</i>, <i>Ps. tristaniopsidis</i> from leaf spots on <i>Tristaniopsis collina</i>, <i>Ps. victoriae</i> from leaf spots on <i>Eucalyptus globoidea</i>. <b>Brazil</b>, <i>Ps. musigena</i> from leaf spots on <i>Musa</i> sp<i>.</i> <b>China</b>, <i>Ps. lonicerae-japonicae</i> from leaf spots on <i>Lonicera japonica</i>, <i>Ps. rubigena</i> leaf spots on <i>Rubus</i> sp. <b>France (Réunion)</b>, <i>Ps. wingfieldii</i> from leaf spots on <i>Acacia heterophylla</i>. <b>Malaysia</b>, <i>Ps. musarum</i> from leaf spots on <i>Musa</i> sp. <b>Netherlands</b>, <i>Ps. rhododendri</i> from leaf spots on <i>Rhododendron</i> sp. <b>South Africa</b>, <i>Ps. balanitis</i> from leaf spots on <i>Balanites</i> sp<i>.</i>, <i>Ps. dovyalidicola</i> from leaf spots on <i>Dovyalis zeyheri</i>, <i>Ps. encephalarticola</i> from leaf spots on <i>Encephalartos</i> sp<i>.</i> <b>South Korea</b>, <i>Ps. grewiana</i> from leaf spots on <i>Grewia biloba</i>, <i>Ps. parakaki</i> from leaf spots on <i>Diospyros kaki</i>, <i>Ps. pseudocydoniae</i> from leaf spots on <i>Chaenomeles lagenaria</i>, <i>Ps. paracydoniae</i> from leaf spots on <i>Chaenomeles speciosa</i>. <b>Thailand</b>, <i>Ps. acerigena</i> from leaf spots on <i>Acer</i> sp<i>.</i>, <i>Ps. tectonigena</i> from leaf spots on <i>Tectona grandis</i>. Epitypes are designated for <i>Cercospora</i> bonjeaneae-rectae, <i>Cercospora halleriae</i>, <i>Ps. eucleae</i>, and an epitype as well as a lectotype for <i>Ps. macadamiae.</i> Results obtained in the present study contribute to a better understanding of the host specificity and distribution in <i>Pseudocercospora</i> spp., many of which represent important pathogens of food or fibre crops, or organisms of quarantine concern. <b>Citation:</b> Groenewald JZ, Chen YY, Zhang Y, Roux J, Shin H-D, Shivas RG, Summerell BA, Braun U, Alfenas AC, Ujat AH, Nakashima C, Crous PW (2024). Species diversity in <i>Pseudocercospora</i>. <i>Fungal Systematics and Evolution</i> <b>13</b>: 29-89. doi: 10.3114/fuse.2024.13.03.</p>","PeriodicalId":73121,"journal":{"name":"Fungal systematics and evolution","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11317867/pdf/","citationCount":"0","resultStr":"{\"title\":\"Species diversity in <i>Pseudocercospora</i>.\",\"authors\":\"J Z Groenewald, Y Y Chen, Y Zhang, J Roux, H-D Shin, R G Shivas, B A Summerell, U Braun, A C Alfenas, A H Ujat, C Nakashima, P W Crous\",\"doi\":\"10.3114/fuse.2024.13.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Species of <i>Pseudocercospora</i> are commonly associated with leaf and fruit spots on diverse plant hosts in sub-tropical and tropical regions. <i>Pseudocercospora</i> spp. have mycosphaerella-like sexual morphs, but represent a distinct genus in <i>Mycosphaerellaceae</i> (<i>Mycosphaerellales</i>, <i>Dothideomycetes</i>). The present study adds a further 29 novel species of <i>Pseudocercospora</i> from 413 host species representing 297 host genera occurring in 60 countries and designates four epitypes and one lectotype for established names. This study recognises 329 species names, with an additional 69 phylogenetic lineages remaining unnamed due to difficulty in being able to unambiguously apply existing names to those lineages. To help elucidate the taxonomy of these species, a phylogenetic tree was generated from multi-locus DNA sequence data of the internal transcribed spacers and intervening 5.8S nuclear nrRNA gene (ITS), partial actin (<i>actA</i>), and partial translation elongation factor 1-alpha (<i>tef1</i>), as well as the partial DNA-directed RNA polymerase II second largest subunit (<i>rpb2</i>) gene sequences. Novel species described in this study include those from various countries as follows: <b>Australia</b>, <i>Ps. acaciicola</i> from leaf spots on <i>Acacia</i> sp., <i>Ps. anopter</i> from leaf spots on <i>Anopterus glandulosus</i>, <i>Ps. asplenii</i> from leaf spots on <i>Asplenium dimorphum</i>, <i>Ps. australiensis</i> from leaf spots on <i>Eucalyptus gunnii</i>, <i>Ps. badjensis</i> from leaf spots on <i>Eucalyptus badjensis</i>, <i>Ps. erythrophloeicola</i> from leaf spots on <i>Erythrophleum chlorostachys</i>, <i>Ps. grevilleae</i> from leaf spots on <i>Grevillea</i> sp., <i>Ps. lophostemonigena</i> from leaf spots on <i>Lophostemon confertus</i>, <i>Ps. lophostemonis</i> from leaf spots on <i>Lophostemon lactifluus</i>, <i>Ps. paramacadamiae</i> from leaf spots on <i>Macadamia integrifolia</i>, <i>Ps. persooniae</i> from leaf spots on <i>Persoonia</i> sp., <i>Ps. pultenaeae</i> from leaf spots on <i>Pultenaea daphnoides</i>, <i>Ps. tristaniopsidis</i> from leaf spots on <i>Tristaniopsis collina</i>, <i>Ps. victoriae</i> from leaf spots on <i>Eucalyptus globoidea</i>. <b>Brazil</b>, <i>Ps. musigena</i> from leaf spots on <i>Musa</i> sp<i>.</i> <b>China</b>, <i>Ps. lonicerae-japonicae</i> from leaf spots on <i>Lonicera japonica</i>, <i>Ps. rubigena</i> leaf spots on <i>Rubus</i> sp. <b>France (Réunion)</b>, <i>Ps. wingfieldii</i> from leaf spots on <i>Acacia heterophylla</i>. <b>Malaysia</b>, <i>Ps. musarum</i> from leaf spots on <i>Musa</i> sp. <b>Netherlands</b>, <i>Ps. rhododendri</i> from leaf spots on <i>Rhododendron</i> sp. <b>South Africa</b>, <i>Ps. balanitis</i> from leaf spots on <i>Balanites</i> sp<i>.</i>, <i>Ps. dovyalidicola</i> from leaf spots on <i>Dovyalis zeyheri</i>, <i>Ps. encephalarticola</i> from leaf spots on <i>Encephalartos</i> sp<i>.</i> <b>South Korea</b>, <i>Ps. grewiana</i> from leaf spots on <i>Grewia biloba</i>, <i>Ps. parakaki</i> from leaf spots on <i>Diospyros kaki</i>, <i>Ps. pseudocydoniae</i> from leaf spots on <i>Chaenomeles lagenaria</i>, <i>Ps. paracydoniae</i> from leaf spots on <i>Chaenomeles speciosa</i>. <b>Thailand</b>, <i>Ps. acerigena</i> from leaf spots on <i>Acer</i> sp<i>.</i>, <i>Ps. tectonigena</i> from leaf spots on <i>Tectona grandis</i>. Epitypes are designated for <i>Cercospora</i> bonjeaneae-rectae, <i>Cercospora halleriae</i>, <i>Ps. eucleae</i>, and an epitype as well as a lectotype for <i>Ps. macadamiae.</i> Results obtained in the present study contribute to a better understanding of the host specificity and distribution in <i>Pseudocercospora</i> spp., many of which represent important pathogens of food or fibre crops, or organisms of quarantine concern. <b>Citation:</b> Groenewald JZ, Chen YY, Zhang Y, Roux J, Shin H-D, Shivas RG, Summerell BA, Braun U, Alfenas AC, Ujat AH, Nakashima C, Crous PW (2024). Species diversity in <i>Pseudocercospora</i>. <i>Fungal Systematics and Evolution</i> <b>13</b>: 29-89. doi: 10.3114/fuse.2024.13.03.</p>\",\"PeriodicalId\":73121,\"journal\":{\"name\":\"Fungal systematics and evolution\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11317867/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fungal systematics and evolution\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3114/fuse.2024.13.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal systematics and evolution","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3114/fuse.2024.13.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/11 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在亚热带和热带地区,假蟠桃孢属(Pseudocercospora)菌种通常与多种植物寄主的叶斑和果斑有关。假孢子菌属具有类似于霉菌磷菌的有性形态,但在霉菌磷菌科(Mycosphaerellales, Dothideomycetes)中是一个独特的属。本研究从分布于 60 个国家、代表 297 个寄主属的 413 个寄主种中又增加了 29 个假盘孢属新种,并为已确定的名称指定了 4 个表型和 1 个讲座型。这项研究确认了 329 个物种名称,另有 69 个系统发育系尚未命名,原因是很难明确地将现有名称应用于这些系统发育系。为了帮助阐明这些物种的分类,我们根据内部转录间隔和中间的 5.8S 核 nrRNA 基因(ITS)、部分肌动蛋白(actA)和部分翻译伸长因子 1-α(tef1)的多焦点 DNA 序列数据,以及部分 DNA 引导的 RNA 聚合酶 II 第二大亚基(rpb2)基因序列,生成了一棵系统发生树。本研究中描述的新物种包括来自以下不同国家的物种:澳大利亚,来自相思树叶斑的 Ps、Ps.anopter(来自于 Anopterus glandulosus 上的叶斑)、Ps.asplenii(来自于 Asplenium dimorphum 上的叶斑)、Ps.australiensis(来自于 Eucalyptus gunnii 上的叶斑)、Ps.badjensis(来自于 Eucalyptus badjensis 上的叶斑)、Ps.erythrophloeicola(来自于 Erythrophleum chlorostachys 上的叶斑)、Ps.grevilleae(来自于 Grevillea sp、Ps. paramacadamiae from leaf spots on Macadamia integrifolia, Ps. persooniae from leaf spots on Persoonia sp、从 Pultenaea daphnoides 的叶斑中提取的 Ps.pultenaeae、从 Tristaniopsis collina 的叶斑中提取的 Ps.tristaniopsidis、从 Eucalyptus globoidea 的叶斑中提取的 Ps.victoriae。中国,忍冬叶斑病中的忍冬叶斑病菌(Ps. lonicerae-japonicae),法国(留尼汪岛),相思叶斑病中的相思叶斑病菌(Ps. wingfieldii)。荷兰杜鹃花叶斑中的 Ps.rhododendri,南非 Balanites sp.叶斑中的 Ps.balanitis、从 Dovyalis zeyheri 的叶斑中提取的 Ps.dovyalidicola、从 Encephalartos sp. 的叶斑中提取的 Ps.encephalarticola、从 Grewia biloba 的叶斑中提取的 Ps.growiana、从 Diospyros kaki 的叶斑中提取的 Ps.parakaki、从 Chaenomeles lagenaria 的叶斑中提取的 Ps.pseudocydoniae、从 Chaenomeles speciosa 的叶斑中提取的 Ps.paracydoniae。泰国,Ps. acerigena 来自 Acer sp.的叶斑,Ps. tectonigena 来自 Tectona grandis 的叶斑。为 Cercospora bonjeaneae-rectae、Cercospora halleriae、Ps. eucleae 指定了表型,为 Ps. macadamiae 指定了一个表型和一个主模式。本研究的结果有助于更好地了解假盘孢属的宿主特异性和分布情况,其中许多假盘孢属是粮食或纤维作物的重要病原体或检疫关注的生物。引用:Groenewald JZ, Chen YY, Zhang Y, Roux J, Shin H-D, Shivas RG, Summerell BA, Braun U, Alfenas AC, Ujat AH, Nakashima C, Crous PW (2024).假孢子菌的物种多样性。真菌系统学与进化 13: 29-89. doi: 10.3114/fuse.2024.13.03.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Species diversity in Pseudocercospora.

Species of Pseudocercospora are commonly associated with leaf and fruit spots on diverse plant hosts in sub-tropical and tropical regions. Pseudocercospora spp. have mycosphaerella-like sexual morphs, but represent a distinct genus in Mycosphaerellaceae (Mycosphaerellales, Dothideomycetes). The present study adds a further 29 novel species of Pseudocercospora from 413 host species representing 297 host genera occurring in 60 countries and designates four epitypes and one lectotype for established names. This study recognises 329 species names, with an additional 69 phylogenetic lineages remaining unnamed due to difficulty in being able to unambiguously apply existing names to those lineages. To help elucidate the taxonomy of these species, a phylogenetic tree was generated from multi-locus DNA sequence data of the internal transcribed spacers and intervening 5.8S nuclear nrRNA gene (ITS), partial actin (actA), and partial translation elongation factor 1-alpha (tef1), as well as the partial DNA-directed RNA polymerase II second largest subunit (rpb2) gene sequences. Novel species described in this study include those from various countries as follows: Australia, Ps. acaciicola from leaf spots on Acacia sp., Ps. anopter from leaf spots on Anopterus glandulosus, Ps. asplenii from leaf spots on Asplenium dimorphum, Ps. australiensis from leaf spots on Eucalyptus gunnii, Ps. badjensis from leaf spots on Eucalyptus badjensis, Ps. erythrophloeicola from leaf spots on Erythrophleum chlorostachys, Ps. grevilleae from leaf spots on Grevillea sp., Ps. lophostemonigena from leaf spots on Lophostemon confertus, Ps. lophostemonis from leaf spots on Lophostemon lactifluus, Ps. paramacadamiae from leaf spots on Macadamia integrifolia, Ps. persooniae from leaf spots on Persoonia sp., Ps. pultenaeae from leaf spots on Pultenaea daphnoides, Ps. tristaniopsidis from leaf spots on Tristaniopsis collina, Ps. victoriae from leaf spots on Eucalyptus globoidea. Brazil, Ps. musigena from leaf spots on Musa sp. China, Ps. lonicerae-japonicae from leaf spots on Lonicera japonica, Ps. rubigena leaf spots on Rubus sp. France (Réunion), Ps. wingfieldii from leaf spots on Acacia heterophylla. Malaysia, Ps. musarum from leaf spots on Musa sp. Netherlands, Ps. rhododendri from leaf spots on Rhododendron sp. South Africa, Ps. balanitis from leaf spots on Balanites sp., Ps. dovyalidicola from leaf spots on Dovyalis zeyheri, Ps. encephalarticola from leaf spots on Encephalartos sp. South Korea, Ps. grewiana from leaf spots on Grewia biloba, Ps. parakaki from leaf spots on Diospyros kaki, Ps. pseudocydoniae from leaf spots on Chaenomeles lagenaria, Ps. paracydoniae from leaf spots on Chaenomeles speciosa. Thailand, Ps. acerigena from leaf spots on Acer sp., Ps. tectonigena from leaf spots on Tectona grandis. Epitypes are designated for Cercospora bonjeaneae-rectae, Cercospora halleriae, Ps. eucleae, and an epitype as well as a lectotype for Ps. macadamiae. Results obtained in the present study contribute to a better understanding of the host specificity and distribution in Pseudocercospora spp., many of which represent important pathogens of food or fibre crops, or organisms of quarantine concern. Citation: Groenewald JZ, Chen YY, Zhang Y, Roux J, Shin H-D, Shivas RG, Summerell BA, Braun U, Alfenas AC, Ujat AH, Nakashima C, Crous PW (2024). Species diversity in Pseudocercospora. Fungal Systematics and Evolution 13: 29-89. doi: 10.3114/fuse.2024.13.03.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信