Kamila Bujko, Mateusz Adamiak, Adrian Konopko, Vira Chumak, Janina Ratajczak, Katarzyna Brzezniakiewicz-Janus, Magdalena Kucia, Mariusz Z Ratajczak
{"title":"Nox-2缺陷小鼠HSPCs迁移缺陷可通过Nlrp3炎症小体激活受损和膜脂筏形成受损来解释","authors":"Kamila Bujko, Mateusz Adamiak, Adrian Konopko, Vira Chumak, Janina Ratajczak, Katarzyna Brzezniakiewicz-Janus, Magdalena Kucia, Mariusz Z Ratajczak","doi":"10.1007/s12015-024-10775-7","DOIUrl":null,"url":null,"abstract":"<p><p>NADPH oxidase 2 (Nox2), a superoxide-generating enzyme, is a source of reactive oxygen species (ROS) that regulate the intracellular redox state, self-renewal, and fate of hematopoietic stem/progenitor cells (HSPCs). Nox2 complex expressed on HSPCs associated with several activated cell membrane receptors increases the intracellular level of ROS. In addition, ROS are also released from mitochondria and, all together, are potent activators of intracellular pattern recognition receptor Nlrp3 inflammasome, which regulates the trafficking, proliferation, and metabolism of HSPCs. In the current study, we noticed that Nox2-deficient mice, despite the increased number of HSPCs in the bone marrow (BM), show hematopoietic defects illustrated by delayed recovery of peripheral blood (PB) hematopoietic parameters after sublethal irradiation and mobilize fewer HSPCs after administration of G-CSF and AMD3100. Moreover, Nox2-deficient HSPCs engraft poorly after transplantation into normal syngeneic recipients. To explain these defects at the molecular level, we hypothesized that Nox2-KO decreased ROS level does not efficiently activate Nlrp3 inflammasome, which plays a crucial role in regulating the trafficking of HSPCs. Herein, we report Nox2-deficient HSPCs display i) defective migration to major chemoattractant, ii) impaired intracellular activation of Nlrp3 inflammasome, and iii) a defect in membrane lipid raft (MLRs) formation that is required for a proper chemotactic response to pro-migratory factors. We conclude that Nox2-derived ROS enhances in Nlrp3 inflammasome-dependent manner HSPCs trafficking by facilitating MLRs assemble on the outer cell membranes, and defect in Nox2 expression results in impaired activation of Nlrp3 inflammasome, which affects HSPCs migration.</p>","PeriodicalId":21955,"journal":{"name":"Stem Cell Reviews and Reports","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Defect in Migration of HSPCs in Nox-2 Deficient Mice Explained by Impaired Activation of Nlrp3 Inflammasome and Impaired Formation of Membrane Lipid Rafts.\",\"authors\":\"Kamila Bujko, Mateusz Adamiak, Adrian Konopko, Vira Chumak, Janina Ratajczak, Katarzyna Brzezniakiewicz-Janus, Magdalena Kucia, Mariusz Z Ratajczak\",\"doi\":\"10.1007/s12015-024-10775-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>NADPH oxidase 2 (Nox2), a superoxide-generating enzyme, is a source of reactive oxygen species (ROS) that regulate the intracellular redox state, self-renewal, and fate of hematopoietic stem/progenitor cells (HSPCs). Nox2 complex expressed on HSPCs associated with several activated cell membrane receptors increases the intracellular level of ROS. In addition, ROS are also released from mitochondria and, all together, are potent activators of intracellular pattern recognition receptor Nlrp3 inflammasome, which regulates the trafficking, proliferation, and metabolism of HSPCs. In the current study, we noticed that Nox2-deficient mice, despite the increased number of HSPCs in the bone marrow (BM), show hematopoietic defects illustrated by delayed recovery of peripheral blood (PB) hematopoietic parameters after sublethal irradiation and mobilize fewer HSPCs after administration of G-CSF and AMD3100. Moreover, Nox2-deficient HSPCs engraft poorly after transplantation into normal syngeneic recipients. To explain these defects at the molecular level, we hypothesized that Nox2-KO decreased ROS level does not efficiently activate Nlrp3 inflammasome, which plays a crucial role in regulating the trafficking of HSPCs. Herein, we report Nox2-deficient HSPCs display i) defective migration to major chemoattractant, ii) impaired intracellular activation of Nlrp3 inflammasome, and iii) a defect in membrane lipid raft (MLRs) formation that is required for a proper chemotactic response to pro-migratory factors. We conclude that Nox2-derived ROS enhances in Nlrp3 inflammasome-dependent manner HSPCs trafficking by facilitating MLRs assemble on the outer cell membranes, and defect in Nox2 expression results in impaired activation of Nlrp3 inflammasome, which affects HSPCs migration.</p>\",\"PeriodicalId\":21955,\"journal\":{\"name\":\"Stem Cell Reviews and Reports\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem Cell Reviews and Reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12015-024-10775-7\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Reviews and Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12015-024-10775-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Defect in Migration of HSPCs in Nox-2 Deficient Mice Explained by Impaired Activation of Nlrp3 Inflammasome and Impaired Formation of Membrane Lipid Rafts.
NADPH oxidase 2 (Nox2), a superoxide-generating enzyme, is a source of reactive oxygen species (ROS) that regulate the intracellular redox state, self-renewal, and fate of hematopoietic stem/progenitor cells (HSPCs). Nox2 complex expressed on HSPCs associated with several activated cell membrane receptors increases the intracellular level of ROS. In addition, ROS are also released from mitochondria and, all together, are potent activators of intracellular pattern recognition receptor Nlrp3 inflammasome, which regulates the trafficking, proliferation, and metabolism of HSPCs. In the current study, we noticed that Nox2-deficient mice, despite the increased number of HSPCs in the bone marrow (BM), show hematopoietic defects illustrated by delayed recovery of peripheral blood (PB) hematopoietic parameters after sublethal irradiation and mobilize fewer HSPCs after administration of G-CSF and AMD3100. Moreover, Nox2-deficient HSPCs engraft poorly after transplantation into normal syngeneic recipients. To explain these defects at the molecular level, we hypothesized that Nox2-KO decreased ROS level does not efficiently activate Nlrp3 inflammasome, which plays a crucial role in regulating the trafficking of HSPCs. Herein, we report Nox2-deficient HSPCs display i) defective migration to major chemoattractant, ii) impaired intracellular activation of Nlrp3 inflammasome, and iii) a defect in membrane lipid raft (MLRs) formation that is required for a proper chemotactic response to pro-migratory factors. We conclude that Nox2-derived ROS enhances in Nlrp3 inflammasome-dependent manner HSPCs trafficking by facilitating MLRs assemble on the outer cell membranes, and defect in Nox2 expression results in impaired activation of Nlrp3 inflammasome, which affects HSPCs migration.
期刊介绍:
The purpose of Stem Cell Reviews and Reports is to cover contemporary and emerging areas in stem cell research and regenerative medicine. The journal will consider for publication:
i) solicited or unsolicited reviews of topical areas of stem cell biology that highlight, critique and synthesize recent important findings in the field.
ii) full length and short reports presenting original experimental work.
iii) translational stem cell studies describing results of clinical trials using stem cells as therapeutics.
iv) papers focused on diseases of stem cells.
v) hypothesis and commentary articles as opinion-based pieces in which authors can propose a new theory, interpretation of a controversial area in stem cell biology, or a stem cell biology question or paradigm. These articles contain more speculation than reviews, but they should be based on solid rationale.
vi) protocols as peer-reviewed procedures that provide step-by-step descriptions, outlined in sufficient detail, so that both experts and novices can apply them to their own research.
vii) letters to the editor and correspondence.
In order to facilitate this exchange of scientific information and exciting novel ideas, the journal has created five thematic sections, focusing on:
i) the role of adult stem cells in tissue regeneration;
ii) progress in research on induced pluripotent stem cells, embryonic stem cells and mechanism governing embryogenesis and tissue development;
iii) the role of microenvironment and extracellular microvesicles in directing the fate of stem cells;
iv) mechanisms of stem cell trafficking, stem cell mobilization and homing with special emphasis on hematopoiesis;
v) the role of stem cells in aging processes and cancerogenesis.