比较蛋白质组分析为提高旱稻籽粒饱满度提供新见解

IF 4.8 1区 农林科学 Q1 AGRONOMY
Rice Pub Date : 2024-08-13 DOI:10.1186/s12284-024-00727-7
Yuhang Zeng, Hongjuan Zi, Zhaocheng Wang, Xiumei Min, Mengying Chen, Bianhong Zhang, Zhong Li, Wenxiong Lin, Zhixing Zhang
{"title":"比较蛋白质组分析为提高旱稻籽粒饱满度提供新见解","authors":"Yuhang Zeng, Hongjuan Zi, Zhaocheng Wang, Xiumei Min, Mengying Chen, Bianhong Zhang, Zhong Li, Wenxiong Lin, Zhixing Zhang","doi":"10.1186/s12284-024-00727-7","DOIUrl":null,"url":null,"abstract":"<p><p>Grain-filling of rice spikelets (particularly for the later flowering inferior spikelets) is an important characteristic that affects both quality and yield. Rice ratooning technology is used to cultivate a second crop from dormant buds that sprout from stubble left after the first harvest. This study used two rice varieties, the conventional indica rice 'Jinhui 809' and the hybrid indica-japonica rice 'Yongyou 1540', to assess the impact of rice ratooning on grain-filling. The results indicated that the grain-filling process in inferior spikelets of ratoon season rice (ISR) showed significant improvement compared to inferior spikelets of main crop (late season) rice (ISL). This improvement was evident in the earlier onset of rapid grain-filling, higher seed-setting percentage, and improved grain quality. A label-free quantitative proteomic analysis using mass spectrometry identified 1724 proteins with significant abundance changes, shedding light on the molecular mechanisms behind the improved grain-filling in ISR. The functional analysis of these proteins indicated that ratooning stimulated the metabolic processes of sucrose-starch, trehalose, and hormones in rice inferior spikelets, leading to enhanced enzyme activities related to starch synthesis, elevated concentrations of trehalose-6-phosphate (T6P), indole-3-acetic acid (IAA) and zeatin riboside (ZR) during the active grain-filling phase. This research highlighted the importance of the GF14f protein as a key regulator in the grain-filling process of ISR. It revealed that GF14f transcriptional and protein levels declined more rapidly in ISR compared to ISL during grain-filling. Additionally, the GF14f-RNAi plants specific to the endosperm exhibited improved quality in inferior spikelets. These findings suggest that the enhancement of starch synthesis, increased levels of IAA, ZR, and T6P, along with the rapid decrease in GF14f protein, play a role in enhancing grain-filling in ratoon season rice.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"17 1","pages":"50"},"PeriodicalIF":4.8000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11322495/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparative Proteomic Analysis Provides New Insights into Improved Grain-filling in Ratoon Season Rice.\",\"authors\":\"Yuhang Zeng, Hongjuan Zi, Zhaocheng Wang, Xiumei Min, Mengying Chen, Bianhong Zhang, Zhong Li, Wenxiong Lin, Zhixing Zhang\",\"doi\":\"10.1186/s12284-024-00727-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Grain-filling of rice spikelets (particularly for the later flowering inferior spikelets) is an important characteristic that affects both quality and yield. Rice ratooning technology is used to cultivate a second crop from dormant buds that sprout from stubble left after the first harvest. This study used two rice varieties, the conventional indica rice 'Jinhui 809' and the hybrid indica-japonica rice 'Yongyou 1540', to assess the impact of rice ratooning on grain-filling. The results indicated that the grain-filling process in inferior spikelets of ratoon season rice (ISR) showed significant improvement compared to inferior spikelets of main crop (late season) rice (ISL). This improvement was evident in the earlier onset of rapid grain-filling, higher seed-setting percentage, and improved grain quality. A label-free quantitative proteomic analysis using mass spectrometry identified 1724 proteins with significant abundance changes, shedding light on the molecular mechanisms behind the improved grain-filling in ISR. The functional analysis of these proteins indicated that ratooning stimulated the metabolic processes of sucrose-starch, trehalose, and hormones in rice inferior spikelets, leading to enhanced enzyme activities related to starch synthesis, elevated concentrations of trehalose-6-phosphate (T6P), indole-3-acetic acid (IAA) and zeatin riboside (ZR) during the active grain-filling phase. This research highlighted the importance of the GF14f protein as a key regulator in the grain-filling process of ISR. It revealed that GF14f transcriptional and protein levels declined more rapidly in ISR compared to ISL during grain-filling. Additionally, the GF14f-RNAi plants specific to the endosperm exhibited improved quality in inferior spikelets. These findings suggest that the enhancement of starch synthesis, increased levels of IAA, ZR, and T6P, along with the rapid decrease in GF14f protein, play a role in enhancing grain-filling in ratoon season rice.</p>\",\"PeriodicalId\":21408,\"journal\":{\"name\":\"Rice\",\"volume\":\"17 1\",\"pages\":\"50\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11322495/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rice\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1186/s12284-024-00727-7\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rice","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s12284-024-00727-7","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

水稻小穗的籽粒饱满度(尤其是开花较晚的劣质小穗)是影响质量和产量的一个重要特征。水稻育秧技术是利用第一次收割后留下的茬口中萌发的休眠芽培育第二茬作物。本研究利用两个水稻品种,即常规籼稻 "金恢 809 "和杂交籼粳稻 "永优 1540",来评估水稻加穗对谷粒饱满度的影响。结果表明,与主栽晚稻(ISL)的劣质穗相比,晚稻(ISR)劣质穗的谷粒充实过程有明显改善。这种改善表现在谷粒快速充实的开始时间提前、结实率提高以及谷粒质量改善。利用质谱法进行的无标记定量蛋白质组分析确定了 1724 个丰度发生显著变化的蛋白质,揭示了 ISR 谷粒饱满度提高背后的分子机制。对这些蛋白质的功能分析表明,在谷粒充实的活跃阶段,穗期刺激了水稻劣质小穗中蔗糖-淀粉、三卤糖和激素的代谢过程,导致与淀粉合成有关的酶活性增强,三卤糖-6-磷酸(T6P)、吲哚-3-乙酸(IAA)和玉米素核苷(ZR)的浓度升高。这项研究强调了 GF14f 蛋白作为 ISR 谷粒充实过程中关键调控因子的重要性。研究发现,在谷粒充实过程中,ISR 的 GF14f 转录和蛋白质水平比 ISL 下降得更快。此外,胚乳特异性 GF14f-RNAi 植株的劣质小穗质量有所改善。这些研究结果表明,淀粉合成的增强、IAA、ZR 和 T6P 水平的提高以及 GF14f 蛋白水平的快速下降,在提高轮季稻籽粒饱满度方面发挥了作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Comparative Proteomic Analysis Provides New Insights into Improved Grain-filling in Ratoon Season Rice.

Comparative Proteomic Analysis Provides New Insights into Improved Grain-filling in Ratoon Season Rice.

Grain-filling of rice spikelets (particularly for the later flowering inferior spikelets) is an important characteristic that affects both quality and yield. Rice ratooning technology is used to cultivate a second crop from dormant buds that sprout from stubble left after the first harvest. This study used two rice varieties, the conventional indica rice 'Jinhui 809' and the hybrid indica-japonica rice 'Yongyou 1540', to assess the impact of rice ratooning on grain-filling. The results indicated that the grain-filling process in inferior spikelets of ratoon season rice (ISR) showed significant improvement compared to inferior spikelets of main crop (late season) rice (ISL). This improvement was evident in the earlier onset of rapid grain-filling, higher seed-setting percentage, and improved grain quality. A label-free quantitative proteomic analysis using mass spectrometry identified 1724 proteins with significant abundance changes, shedding light on the molecular mechanisms behind the improved grain-filling in ISR. The functional analysis of these proteins indicated that ratooning stimulated the metabolic processes of sucrose-starch, trehalose, and hormones in rice inferior spikelets, leading to enhanced enzyme activities related to starch synthesis, elevated concentrations of trehalose-6-phosphate (T6P), indole-3-acetic acid (IAA) and zeatin riboside (ZR) during the active grain-filling phase. This research highlighted the importance of the GF14f protein as a key regulator in the grain-filling process of ISR. It revealed that GF14f transcriptional and protein levels declined more rapidly in ISR compared to ISL during grain-filling. Additionally, the GF14f-RNAi plants specific to the endosperm exhibited improved quality in inferior spikelets. These findings suggest that the enhancement of starch synthesis, increased levels of IAA, ZR, and T6P, along with the rapid decrease in GF14f protein, play a role in enhancing grain-filling in ratoon season rice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rice
Rice AGRONOMY-
CiteScore
10.10
自引率
3.60%
发文量
60
审稿时长
>12 weeks
期刊介绍: Rice aims to fill a glaring void in basic and applied plant science journal publishing. This journal is the world''s only high-quality serial publication for reporting current advances in rice genetics, structural and functional genomics, comparative genomics, molecular biology and physiology, molecular breeding and comparative biology. Rice welcomes review articles and original papers in all of the aforementioned areas and serves as the primary source of newly published information for researchers and students in rice and related research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信