Tai Joon An, Jangwon Lee, Myoungin Shin, Chin Kook Rhee
{"title":"常见呼吸道病毒的季节性:全国时间序列数据分析。","authors":"Tai Joon An, Jangwon Lee, Myoungin Shin, Chin Kook Rhee","doi":"10.1111/resp.14818","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objective: </strong>Understanding the seasonal behaviours of respiratory viruses is crucial for preventing infections. We evaluated the seasonality of respiratory viruses using time-series analyses.</p><p><strong>Methods: </strong>This study analysed prospectively collected nationwide surveillance data on eight respiratory viruses, gathered from the Korean Influenza and Respiratory Surveillance System. The data were collected on a weekly basis by 52 nationwide primary healthcare institutions between 2015 and 2019. We performed Spearman correlation analyses, similarity analyses via dynamic time warping (DTW) and seasonality analyses using seasonal autoregressive integrated moving average (SARIMA).</p><p><strong>Results: </strong>The prevalence of rhinovirus (RV, 23.6%-31.4%), adenovirus (AdV, 9.2%-16.6%), human coronavirus (HCoV, 3.0%-6.6%), respiratory syncytial virus (RSV, 11.7%-20.1%), influenza virus (IFV, 11.7%-21.5%), parainfluenza virus (PIV, 9.2%-12.6%), human metapneumovirus (HMPV, 5.6%-6.9%) and human bocavirus (HBoV, 5.0%-6.4%) were derived. Most of them exhibited a high positive correlation in Spearman analyses. In DTW analyses, all virus data from 2015 to 2019, except AdV, exhibited good alignments. In SARIMA, AdV and RV did not show seasonality. Other viruses showed 12-month seasonality. We describe the viruses as winter viruses (HCoV, RSV and IFV), spring/summer viruses (PIV, HBoV), a spring virus (HMPV) and all-year viruses with peak incidences during school periods (RV and AdV).</p><p><strong>Conclusion: </strong>This is the first study to comprehensively analyse the seasonal behaviours of the eight most common respiratory viruses using nationwide, prospectively collected, sentinel surveillance data.</p>","PeriodicalId":21129,"journal":{"name":"Respirology","volume":" ","pages":"985-993"},"PeriodicalIF":6.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seasonality of common respiratory viruses: Analysis of nationwide time-series data.\",\"authors\":\"Tai Joon An, Jangwon Lee, Myoungin Shin, Chin Kook Rhee\",\"doi\":\"10.1111/resp.14818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and objective: </strong>Understanding the seasonal behaviours of respiratory viruses is crucial for preventing infections. We evaluated the seasonality of respiratory viruses using time-series analyses.</p><p><strong>Methods: </strong>This study analysed prospectively collected nationwide surveillance data on eight respiratory viruses, gathered from the Korean Influenza and Respiratory Surveillance System. The data were collected on a weekly basis by 52 nationwide primary healthcare institutions between 2015 and 2019. We performed Spearman correlation analyses, similarity analyses via dynamic time warping (DTW) and seasonality analyses using seasonal autoregressive integrated moving average (SARIMA).</p><p><strong>Results: </strong>The prevalence of rhinovirus (RV, 23.6%-31.4%), adenovirus (AdV, 9.2%-16.6%), human coronavirus (HCoV, 3.0%-6.6%), respiratory syncytial virus (RSV, 11.7%-20.1%), influenza virus (IFV, 11.7%-21.5%), parainfluenza virus (PIV, 9.2%-12.6%), human metapneumovirus (HMPV, 5.6%-6.9%) and human bocavirus (HBoV, 5.0%-6.4%) were derived. Most of them exhibited a high positive correlation in Spearman analyses. In DTW analyses, all virus data from 2015 to 2019, except AdV, exhibited good alignments. In SARIMA, AdV and RV did not show seasonality. Other viruses showed 12-month seasonality. We describe the viruses as winter viruses (HCoV, RSV and IFV), spring/summer viruses (PIV, HBoV), a spring virus (HMPV) and all-year viruses with peak incidences during school periods (RV and AdV).</p><p><strong>Conclusion: </strong>This is the first study to comprehensively analyse the seasonal behaviours of the eight most common respiratory viruses using nationwide, prospectively collected, sentinel surveillance data.</p>\",\"PeriodicalId\":21129,\"journal\":{\"name\":\"Respirology\",\"volume\":\" \",\"pages\":\"985-993\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Respirology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/resp.14818\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"RESPIRATORY SYSTEM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respirology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/resp.14818","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
Seasonality of common respiratory viruses: Analysis of nationwide time-series data.
Background and objective: Understanding the seasonal behaviours of respiratory viruses is crucial for preventing infections. We evaluated the seasonality of respiratory viruses using time-series analyses.
Methods: This study analysed prospectively collected nationwide surveillance data on eight respiratory viruses, gathered from the Korean Influenza and Respiratory Surveillance System. The data were collected on a weekly basis by 52 nationwide primary healthcare institutions between 2015 and 2019. We performed Spearman correlation analyses, similarity analyses via dynamic time warping (DTW) and seasonality analyses using seasonal autoregressive integrated moving average (SARIMA).
Results: The prevalence of rhinovirus (RV, 23.6%-31.4%), adenovirus (AdV, 9.2%-16.6%), human coronavirus (HCoV, 3.0%-6.6%), respiratory syncytial virus (RSV, 11.7%-20.1%), influenza virus (IFV, 11.7%-21.5%), parainfluenza virus (PIV, 9.2%-12.6%), human metapneumovirus (HMPV, 5.6%-6.9%) and human bocavirus (HBoV, 5.0%-6.4%) were derived. Most of them exhibited a high positive correlation in Spearman analyses. In DTW analyses, all virus data from 2015 to 2019, except AdV, exhibited good alignments. In SARIMA, AdV and RV did not show seasonality. Other viruses showed 12-month seasonality. We describe the viruses as winter viruses (HCoV, RSV and IFV), spring/summer viruses (PIV, HBoV), a spring virus (HMPV) and all-year viruses with peak incidences during school periods (RV and AdV).
Conclusion: This is the first study to comprehensively analyse the seasonal behaviours of the eight most common respiratory viruses using nationwide, prospectively collected, sentinel surveillance data.
期刊介绍:
Respirology is a journal of international standing, publishing peer-reviewed articles of scientific excellence in clinical and clinically-relevant experimental respiratory biology and disease. Fields of research include immunology, intensive and critical care, epidemiology, cell and molecular biology, pathology, pharmacology, physiology, paediatric respiratory medicine, clinical trials, interventional pulmonology and thoracic surgery.
The Journal aims to encourage the international exchange of results and publishes papers in the following categories: Original Articles, Editorials, Reviews, and Correspondences.
Respirology is the preferred journal of the Thoracic Society of Australia and New Zealand, has been adopted as the preferred English journal of the Japanese Respiratory Society and the Taiwan Society of Pulmonary and Critical Care Medicine and is an official journal of the World Association for Bronchology and Interventional Pulmonology.