T D Segatto, K K Dolenkei, P Bernardes, C J Soares, R R Pacheco, L H Raposo
{"title":"无绳 LED 光固化装置中的电池电量对树脂水泥和玻璃纤维柱固着性能的影响。","authors":"T D Segatto, K K Dolenkei, P Bernardes, C J Soares, R R Pacheco, L H Raposo","doi":"10.2341/23-125-L","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study aimed to assess the impact of battery levels in single-peak and multi-peak light-curing units (LCUs) on irradiance, and their effects on glass fiber post push-out bond strength to root dentin and the degree of conversion of dual-cure universal resin cement.</p><p><strong>Methods and materials: </strong>Sixty bovine roots underwent endodontic treatment and were randomly distributed into 6 groups (n=10), formed by combining two LCUs (single-peak and multipeak) and three battery levels (100%, 50%, and 10%). A spectrophotometer measured irradiance (mW/ cm2) and spectral irradiance (mW/cm2/nm). Push-out bond strength (PBS) tests occurred at three root regions (cervical, middle, and apical), with optical and scanning electron microscopy for failure mode analysis. Degree of conversion (DC) was evaluated across the root regions. Data were analyzed using two-way repeated measures ANOVA and the Tukey HSD test. The Fisher exact test verified failure modes (α=0.05).</p><p><strong>Results: </strong>As multipeak LCU battery levels decreased, emitted irradiance also diminished, with notable PBS reductions in the apical thirds. Failure modes were influenced by different conditions, primarily exhibiting mixed modes. Battery levels significantly impacted DC in the multipeak LCU, particularly in the cervical region, while the single-peak LCU exhibited DC reduction at the 10% battery level in the cervical region.</p><p><strong>Conclusions: </strong>Emitted irradiance, resin cement DC, and glass fiber post bond strength to root dentin may be influenced by varying cordless LCUs and battery levels.</p>","PeriodicalId":19502,"journal":{"name":"Operative dentistry","volume":" ","pages":"540-550"},"PeriodicalIF":1.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Battery Levels in Cordless LED Light-curing Units on Properties of Resin Cement and Glass Fiber Post Retention.\",\"authors\":\"T D Segatto, K K Dolenkei, P Bernardes, C J Soares, R R Pacheco, L H Raposo\",\"doi\":\"10.2341/23-125-L\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>This study aimed to assess the impact of battery levels in single-peak and multi-peak light-curing units (LCUs) on irradiance, and their effects on glass fiber post push-out bond strength to root dentin and the degree of conversion of dual-cure universal resin cement.</p><p><strong>Methods and materials: </strong>Sixty bovine roots underwent endodontic treatment and were randomly distributed into 6 groups (n=10), formed by combining two LCUs (single-peak and multipeak) and three battery levels (100%, 50%, and 10%). A spectrophotometer measured irradiance (mW/ cm2) and spectral irradiance (mW/cm2/nm). Push-out bond strength (PBS) tests occurred at three root regions (cervical, middle, and apical), with optical and scanning electron microscopy for failure mode analysis. Degree of conversion (DC) was evaluated across the root regions. Data were analyzed using two-way repeated measures ANOVA and the Tukey HSD test. The Fisher exact test verified failure modes (α=0.05).</p><p><strong>Results: </strong>As multipeak LCU battery levels decreased, emitted irradiance also diminished, with notable PBS reductions in the apical thirds. Failure modes were influenced by different conditions, primarily exhibiting mixed modes. Battery levels significantly impacted DC in the multipeak LCU, particularly in the cervical region, while the single-peak LCU exhibited DC reduction at the 10% battery level in the cervical region.</p><p><strong>Conclusions: </strong>Emitted irradiance, resin cement DC, and glass fiber post bond strength to root dentin may be influenced by varying cordless LCUs and battery levels.</p>\",\"PeriodicalId\":19502,\"journal\":{\"name\":\"Operative dentistry\",\"volume\":\" \",\"pages\":\"540-550\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Operative dentistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2341/23-125-L\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operative dentistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2341/23-125-L","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Influence of Battery Levels in Cordless LED Light-curing Units on Properties of Resin Cement and Glass Fiber Post Retention.
Purpose: This study aimed to assess the impact of battery levels in single-peak and multi-peak light-curing units (LCUs) on irradiance, and their effects on glass fiber post push-out bond strength to root dentin and the degree of conversion of dual-cure universal resin cement.
Methods and materials: Sixty bovine roots underwent endodontic treatment and were randomly distributed into 6 groups (n=10), formed by combining two LCUs (single-peak and multipeak) and three battery levels (100%, 50%, and 10%). A spectrophotometer measured irradiance (mW/ cm2) and spectral irradiance (mW/cm2/nm). Push-out bond strength (PBS) tests occurred at three root regions (cervical, middle, and apical), with optical and scanning electron microscopy for failure mode analysis. Degree of conversion (DC) was evaluated across the root regions. Data were analyzed using two-way repeated measures ANOVA and the Tukey HSD test. The Fisher exact test verified failure modes (α=0.05).
Results: As multipeak LCU battery levels decreased, emitted irradiance also diminished, with notable PBS reductions in the apical thirds. Failure modes were influenced by different conditions, primarily exhibiting mixed modes. Battery levels significantly impacted DC in the multipeak LCU, particularly in the cervical region, while the single-peak LCU exhibited DC reduction at the 10% battery level in the cervical region.
Conclusions: Emitted irradiance, resin cement DC, and glass fiber post bond strength to root dentin may be influenced by varying cordless LCUs and battery levels.
期刊介绍:
Operative Dentistry is a refereed, international journal published bi-monthly and distributed to subscribers in over 50 countries. In 2012, we printed 84 articles (672 pages). Papers were submitted by authors from 45 countries, in the categories of Clinical Research, Laboratory Research, Clinical Techniques/Case Presentations and Invited Papers, as well as Editorials and Abstracts.
One of the strong points of our journal is that our current publication time for accepted manuscripts is 4 to 6 months from the date of submission. Clinical Techniques/Case Presentations have a very quick turnaround time, which allows for very rapid publication of clinical based concepts. We also provide color for those papers that would benefit from its use.
The journal does not accept any advertising but you will find postings for faculty positions. Additionally, the journal also does not rent, sell or otherwise allow its subscriber list to be used by any other entity