遗传性和获得性肌肉疾病中的继发性线粒体功能障碍。

IF 3.9 3区 生物学 Q2 CELL BIOLOGY
Gloria Mak , Mark Tarnopolsky , Jian-Qiang Lu
{"title":"遗传性和获得性肌肉疾病中的继发性线粒体功能障碍。","authors":"Gloria Mak ,&nbsp;Mark Tarnopolsky ,&nbsp;Jian-Qiang Lu","doi":"10.1016/j.mito.2024.101945","DOIUrl":null,"url":null,"abstract":"<div><p>Mitochondria form a dynamic network within skeletal muscle. This network is not only responsible for producing adenosine triphosphate (ATP) through oxidative phosphorylation, but also responds through fission, fusion and mitophagy to various factors, such as increased energy demands, oxidative stress, inflammation, and calcium dysregulation. Mitochondrial dysfunction in skeletal muscle not only occurs in primary mitochondrial myopathies, but also other hereditary and acquired myopathies. As such, this review attempts to highlight the clinical and histopathologic aspects of mitochondrial dysfunction seen in hereditary and acquired myopathies, as well as discuss potential mechanisms leading to mitochondrial dysfunction and therapies to restore mitochondrial function.</p></div>","PeriodicalId":18606,"journal":{"name":"Mitochondrion","volume":"78 ","pages":"Article 101945"},"PeriodicalIF":3.9000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Secondary mitochondrial dysfunction across the spectrum of hereditary and acquired muscle disorders\",\"authors\":\"Gloria Mak ,&nbsp;Mark Tarnopolsky ,&nbsp;Jian-Qiang Lu\",\"doi\":\"10.1016/j.mito.2024.101945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mitochondria form a dynamic network within skeletal muscle. This network is not only responsible for producing adenosine triphosphate (ATP) through oxidative phosphorylation, but also responds through fission, fusion and mitophagy to various factors, such as increased energy demands, oxidative stress, inflammation, and calcium dysregulation. Mitochondrial dysfunction in skeletal muscle not only occurs in primary mitochondrial myopathies, but also other hereditary and acquired myopathies. As such, this review attempts to highlight the clinical and histopathologic aspects of mitochondrial dysfunction seen in hereditary and acquired myopathies, as well as discuss potential mechanisms leading to mitochondrial dysfunction and therapies to restore mitochondrial function.</p></div>\",\"PeriodicalId\":18606,\"journal\":{\"name\":\"Mitochondrion\",\"volume\":\"78 \",\"pages\":\"Article 101945\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mitochondrion\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S156772492400103X\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mitochondrion","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156772492400103X","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

线粒体在骨骼肌内形成了一个动态网络。该网络不仅负责通过氧化磷酸化产生三磷酸腺嘌呤,还通过裂变、融合和有丝分裂对各种因素(如能量需求增加、氧化应激、炎症和钙失调)做出反应。骨骼肌线粒体功能障碍不仅发生在原发性线粒体肌病中,还发生在其他遗传性和获得性肌病中。因此,本综述试图强调遗传性和获得性肌病中线粒体功能障碍的临床和组织病理学方面,并讨论导致线粒体功能障碍的潜在机制和恢复线粒体功能的疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Secondary mitochondrial dysfunction across the spectrum of hereditary and acquired muscle disorders

Mitochondria form a dynamic network within skeletal muscle. This network is not only responsible for producing adenosine triphosphate (ATP) through oxidative phosphorylation, but also responds through fission, fusion and mitophagy to various factors, such as increased energy demands, oxidative stress, inflammation, and calcium dysregulation. Mitochondrial dysfunction in skeletal muscle not only occurs in primary mitochondrial myopathies, but also other hereditary and acquired myopathies. As such, this review attempts to highlight the clinical and histopathologic aspects of mitochondrial dysfunction seen in hereditary and acquired myopathies, as well as discuss potential mechanisms leading to mitochondrial dysfunction and therapies to restore mitochondrial function.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mitochondrion
Mitochondrion 生物-细胞生物学
CiteScore
9.40
自引率
4.50%
发文量
86
审稿时长
13.6 weeks
期刊介绍: Mitochondrion is a definitive, high profile, peer-reviewed international research journal. The scope of Mitochondrion is broad, reporting on basic science of mitochondria from all organisms and from basic research to pathology and clinical aspects of mitochondrial diseases. The journal welcomes original contributions from investigators working in diverse sub-disciplines such as evolution, biophysics, biochemistry, molecular and cell biology, genetics, pharmacology, toxicology, forensic science, programmed cell death, aging, cancer and clinical features of mitochondrial diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信