Gabriela Cintra Januário, Ana Lívia Libardi Bertachini, Andrezza Gonzalez Escarce, Luciana Macedo de Resende, Débora Marques de Miranda
{"title":"功能性近红外光谱与语言发展:综合综述。","authors":"Gabriela Cintra Januário, Ana Lívia Libardi Bertachini, Andrezza Gonzalez Escarce, Luciana Macedo de Resende, Débora Marques de Miranda","doi":"10.1002/jdn.10366","DOIUrl":null,"url":null,"abstract":"<p>Functional near-infrared spectroscopy (fNIRS) stands poised to revolutionize our understanding of auditory detection, speech perception, and language development in infants. In this study, we conducted a meticulous integrative review across Medline, Scopus, and LILACS databases, targeting investigations utilizing fNIRS to explore language-related features and cortical activation during auditory stimuli in typical infants. We included studies that used the NIRS technique to study language and cortical activation in response to auditory stimuli in typical infants between 0 and 3 years old. We used the ROBINS-I tool to assess the quality and the risk of bias in the studies. Our analysis, encompassing 66 manuscripts, is presented in standardized tables for streamlined data extraction. We meticulously correlated findings with children's developmental stages, delineating crucial insights into brain development and its intricate interplay with language outcomes. Although most studies have a high risk for overall bias, especially due to the high loss of data in NIRS studies, the low risk in the other domains is predominant and homogeneous among the studies. Highlighted are the unique advantages of fNIRS for pediatric studies, underscored by its innate suitability for use in children. This review accentuates fNIRS' capacity to elucidate the neural correlates of language processing and the sequential steps of language acquisition. From birth, infants exhibit abilities that lay the foundation for language development. The progression from diffuse to specific neural activation patterns is extremely influenced by exposure to languages, social interaction, and prosodic features and, reflects the maturation of brain networks involved in language processing. In conclusion, fNIRS emerges as an indispensable functional imaging modality, providing insights into the temporal dynamics of language acquisition and associated developmental milestones. This synthesis presents the pivotal role of fNIRS in advancing our comprehension of early language development and paves the way for future research endeavors in this domain.</p>","PeriodicalId":13914,"journal":{"name":"International Journal of Developmental Neuroscience","volume":"84 7","pages":"613-637"},"PeriodicalIF":1.7000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional near-infrared spectroscopy and language development: An integrative review\",\"authors\":\"Gabriela Cintra Januário, Ana Lívia Libardi Bertachini, Andrezza Gonzalez Escarce, Luciana Macedo de Resende, Débora Marques de Miranda\",\"doi\":\"10.1002/jdn.10366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Functional near-infrared spectroscopy (fNIRS) stands poised to revolutionize our understanding of auditory detection, speech perception, and language development in infants. In this study, we conducted a meticulous integrative review across Medline, Scopus, and LILACS databases, targeting investigations utilizing fNIRS to explore language-related features and cortical activation during auditory stimuli in typical infants. We included studies that used the NIRS technique to study language and cortical activation in response to auditory stimuli in typical infants between 0 and 3 years old. We used the ROBINS-I tool to assess the quality and the risk of bias in the studies. Our analysis, encompassing 66 manuscripts, is presented in standardized tables for streamlined data extraction. We meticulously correlated findings with children's developmental stages, delineating crucial insights into brain development and its intricate interplay with language outcomes. Although most studies have a high risk for overall bias, especially due to the high loss of data in NIRS studies, the low risk in the other domains is predominant and homogeneous among the studies. Highlighted are the unique advantages of fNIRS for pediatric studies, underscored by its innate suitability for use in children. This review accentuates fNIRS' capacity to elucidate the neural correlates of language processing and the sequential steps of language acquisition. From birth, infants exhibit abilities that lay the foundation for language development. The progression from diffuse to specific neural activation patterns is extremely influenced by exposure to languages, social interaction, and prosodic features and, reflects the maturation of brain networks involved in language processing. In conclusion, fNIRS emerges as an indispensable functional imaging modality, providing insights into the temporal dynamics of language acquisition and associated developmental milestones. This synthesis presents the pivotal role of fNIRS in advancing our comprehension of early language development and paves the way for future research endeavors in this domain.</p>\",\"PeriodicalId\":13914,\"journal\":{\"name\":\"International Journal of Developmental Neuroscience\",\"volume\":\"84 7\",\"pages\":\"613-637\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Developmental Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jdn.10366\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Developmental Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jdn.10366","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
Functional near-infrared spectroscopy and language development: An integrative review
Functional near-infrared spectroscopy (fNIRS) stands poised to revolutionize our understanding of auditory detection, speech perception, and language development in infants. In this study, we conducted a meticulous integrative review across Medline, Scopus, and LILACS databases, targeting investigations utilizing fNIRS to explore language-related features and cortical activation during auditory stimuli in typical infants. We included studies that used the NIRS technique to study language and cortical activation in response to auditory stimuli in typical infants between 0 and 3 years old. We used the ROBINS-I tool to assess the quality and the risk of bias in the studies. Our analysis, encompassing 66 manuscripts, is presented in standardized tables for streamlined data extraction. We meticulously correlated findings with children's developmental stages, delineating crucial insights into brain development and its intricate interplay with language outcomes. Although most studies have a high risk for overall bias, especially due to the high loss of data in NIRS studies, the low risk in the other domains is predominant and homogeneous among the studies. Highlighted are the unique advantages of fNIRS for pediatric studies, underscored by its innate suitability for use in children. This review accentuates fNIRS' capacity to elucidate the neural correlates of language processing and the sequential steps of language acquisition. From birth, infants exhibit abilities that lay the foundation for language development. The progression from diffuse to specific neural activation patterns is extremely influenced by exposure to languages, social interaction, and prosodic features and, reflects the maturation of brain networks involved in language processing. In conclusion, fNIRS emerges as an indispensable functional imaging modality, providing insights into the temporal dynamics of language acquisition and associated developmental milestones. This synthesis presents the pivotal role of fNIRS in advancing our comprehension of early language development and paves the way for future research endeavors in this domain.
期刊介绍:
International Journal of Developmental Neuroscience publishes original research articles and critical review papers on all fundamental and clinical aspects of nervous system development, renewal and regeneration, as well as on the effects of genetic and environmental perturbations of brain development and homeostasis leading to neurodevelopmental disorders and neurological conditions. Studies describing the involvement of stem cells in nervous system maintenance and disease (including brain tumours), stem cell-based approaches for the investigation of neurodegenerative diseases, roles of neuroinflammation in development and disease, and neuroevolution are also encouraged. Investigations using molecular, cellular, physiological, genetic and epigenetic approaches in model systems ranging from simple invertebrates to human iPSC-based 2D and 3D models are encouraged, as are studies using experimental models that provide behavioural or evolutionary insights. The journal also publishes Special Issues dealing with topics at the cutting edge of research edited by Guest Editors appointed by the Editor in Chief. A major aim of the journal is to facilitate the transfer of fundamental studies of nervous system development, maintenance, and disease to clinical applications. The journal thus intends to disseminate valuable information for both biologists and physicians. International Journal of Developmental Neuroscience is owned and supported by The International Society for Developmental Neuroscience (ISDN), an organization of scientists interested in advancing developmental neuroscience research in the broadest sense.