Hyun Jin Min, Bo-Yun Choi, Woo Jun Sul, Hyung-Ju Cho
{"title":"持续气道正压装置中的微生物组和霉菌生物组分析。","authors":"Hyun Jin Min, Bo-Yun Choi, Woo Jun Sul, Hyung-Ju Cho","doi":"10.21053/ceo.2024.00167","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Microorganisms are likely present in continuous positive airway pressure (CPAP) devices in daily use. Given the potential risk of infection among CPAP users, we aimed to compare the microbiomes of CPAP devices with those of nasal mucosa samples obtained from patients using these devices.</p><p><strong>Methods: </strong>We conducted a prospective cohort study at multiple tertiary medical institutions. Samples were collected from the tubes and filters of CPAP devices and the nasal mucosa of device users. Microbiomes and mycobiomes were analyzed using 16S ribosomal RNA and internal transcribed spacer region sequencing. The results were compared according to sampling site and usage duration for each patient.</p><p><strong>Results: </strong>Overall, 27 paired samples of human nasal mucosa and CPAP components were analyzed. Bacteria were detected in 7 of the 27 tubes (25.9%) and in 22 of the 27 filters (81.5%). Fungi were found in 2 tubes (7.4%) and 16 filters (59.3%). The most prevalent bacterial phyla across all samples were Actinobacteria and Firmicutes. Fungi were not detected in any nasal mucosa samples. However, fungi were identified in the CPAP filters and tubes, with the Basidiomycota and Ascomycota phyla predominating. No significant associations were identified according to sampling site or duration of CPAP use.</p><p><strong>Conclusion: </strong>Some bacteria or fungi are detectable in CPAP samples, even after a short period of CPAP usage. However, the association between respiratory infections and these microbiomes or mycobiomes was not investigated. Further research is required to clarify the risk posed by CPAP devices as a microbial contamination source.</p>","PeriodicalId":10318,"journal":{"name":"Clinical and Experimental Otorhinolaryngology","volume":" ","pages":"292-301"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11626094/pdf/","citationCount":"0","resultStr":"{\"title\":\"Microbiome and Mycobiome Analyses of Continuous Positive Airway Pressure Devices.\",\"authors\":\"Hyun Jin Min, Bo-Yun Choi, Woo Jun Sul, Hyung-Ju Cho\",\"doi\":\"10.21053/ceo.2024.00167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Microorganisms are likely present in continuous positive airway pressure (CPAP) devices in daily use. Given the potential risk of infection among CPAP users, we aimed to compare the microbiomes of CPAP devices with those of nasal mucosa samples obtained from patients using these devices.</p><p><strong>Methods: </strong>We conducted a prospective cohort study at multiple tertiary medical institutions. Samples were collected from the tubes and filters of CPAP devices and the nasal mucosa of device users. Microbiomes and mycobiomes were analyzed using 16S ribosomal RNA and internal transcribed spacer region sequencing. The results were compared according to sampling site and usage duration for each patient.</p><p><strong>Results: </strong>Overall, 27 paired samples of human nasal mucosa and CPAP components were analyzed. Bacteria were detected in 7 of the 27 tubes (25.9%) and in 22 of the 27 filters (81.5%). Fungi were found in 2 tubes (7.4%) and 16 filters (59.3%). The most prevalent bacterial phyla across all samples were Actinobacteria and Firmicutes. Fungi were not detected in any nasal mucosa samples. However, fungi were identified in the CPAP filters and tubes, with the Basidiomycota and Ascomycota phyla predominating. No significant associations were identified according to sampling site or duration of CPAP use.</p><p><strong>Conclusion: </strong>Some bacteria or fungi are detectable in CPAP samples, even after a short period of CPAP usage. However, the association between respiratory infections and these microbiomes or mycobiomes was not investigated. Further research is required to clarify the risk posed by CPAP devices as a microbial contamination source.</p>\",\"PeriodicalId\":10318,\"journal\":{\"name\":\"Clinical and Experimental Otorhinolaryngology\",\"volume\":\" \",\"pages\":\"292-301\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11626094/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical and Experimental Otorhinolaryngology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.21053/ceo.2024.00167\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"OTORHINOLARYNGOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Experimental Otorhinolaryngology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21053/ceo.2024.00167","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"OTORHINOLARYNGOLOGY","Score":null,"Total":0}
Microbiome and Mycobiome Analyses of Continuous Positive Airway Pressure Devices.
Objectives: Microorganisms are likely present in continuous positive airway pressure (CPAP) devices in daily use. Given the potential risk of infection among CPAP users, we aimed to compare the microbiomes of CPAP devices with those of nasal mucosa samples obtained from patients using these devices.
Methods: We conducted a prospective cohort study at multiple tertiary medical institutions. Samples were collected from the tubes and filters of CPAP devices and the nasal mucosa of device users. Microbiomes and mycobiomes were analyzed using 16S ribosomal RNA and internal transcribed spacer region sequencing. The results were compared according to sampling site and usage duration for each patient.
Results: Overall, 27 paired samples of human nasal mucosa and CPAP components were analyzed. Bacteria were detected in 7 of the 27 tubes (25.9%) and in 22 of the 27 filters (81.5%). Fungi were found in 2 tubes (7.4%) and 16 filters (59.3%). The most prevalent bacterial phyla across all samples were Actinobacteria and Firmicutes. Fungi were not detected in any nasal mucosa samples. However, fungi were identified in the CPAP filters and tubes, with the Basidiomycota and Ascomycota phyla predominating. No significant associations were identified according to sampling site or duration of CPAP use.
Conclusion: Some bacteria or fungi are detectable in CPAP samples, even after a short period of CPAP usage. However, the association between respiratory infections and these microbiomes or mycobiomes was not investigated. Further research is required to clarify the risk posed by CPAP devices as a microbial contamination source.
期刊介绍:
Clinical and Experimental Otorhinolaryngology (Clin Exp Otorhinolaryngol, CEO) is an international peer-reviewed journal on recent developments in diagnosis and treatment of otorhinolaryngology-head and neck surgery and dedicated to the advancement of patient care in ear, nose, throat, head, and neck disorders. This journal publishes original articles relating to both clinical and basic researches, reviews, and clinical trials, encompassing the whole topics of otorhinolaryngology-head and neck surgery.
CEO was first issued in 2008 and this journal is published in English four times (the last day of February, May, August, and November) per year by the Korean Society of Otorhinolaryngology-Head and Neck Surgery. The Journal aims at publishing evidence-based, scientifically written articles from different disciplines of otorhinolaryngology field.
The readership contains clinical/basic research into current practice in otorhinolaryngology, audiology, speech pathology, head and neck oncology, plastic and reconstructive surgery. The readers are otolaryngologists, head and neck surgeons and oncologists, audiologists, and speech pathologists.