{"title":"揭示硫醇生物标志物:谷胱甘肽和半胱胺","authors":"M.G. Gopika, Surya Gopidas, Gokul S. Jayan, P.S. Arathy, Beena Saraswathyamma","doi":"10.1016/j.cca.2024.119915","DOIUrl":null,"url":null,"abstract":"<div><p>The physiological and clinical importance of Glutathione and Cysteamine is emphasized by their participation in a range of conditions, such as diabetes, cancer, renal failure, Parkinson’s disease, and hypothyroidism. This necessitates the requirement for accessible, expedited, and cost-efficient testing that can facilitate clinical diagnosis and treatment options. This article examines numerous techniques used to detect both glutathione and cysteamine. The discussed methods include electroanalytical techniques such as voltammetry and amperometry, which are examined for their sensitivity and ability to provide real-time analysis. Furthermore, this study investigates the accuracy of gas chromatography-mass spectrometry (GC–MS) and high-performance liquid chromatography (HPLC) in measuring the concentrations of glutathione and cysteamine. Additionally, the potential of new nanotechnology-based methods, such as plasmonic nanoparticles and quantum dots, to improve the sensitivity of detecting glutathione and cysteamine is emphasized.</p></div>","PeriodicalId":10205,"journal":{"name":"Clinica Chimica Acta","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling thiol biomarkers: Glutathione and cysteamine\",\"authors\":\"M.G. Gopika, Surya Gopidas, Gokul S. Jayan, P.S. Arathy, Beena Saraswathyamma\",\"doi\":\"10.1016/j.cca.2024.119915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The physiological and clinical importance of Glutathione and Cysteamine is emphasized by their participation in a range of conditions, such as diabetes, cancer, renal failure, Parkinson’s disease, and hypothyroidism. This necessitates the requirement for accessible, expedited, and cost-efficient testing that can facilitate clinical diagnosis and treatment options. This article examines numerous techniques used to detect both glutathione and cysteamine. The discussed methods include electroanalytical techniques such as voltammetry and amperometry, which are examined for their sensitivity and ability to provide real-time analysis. Furthermore, this study investigates the accuracy of gas chromatography-mass spectrometry (GC–MS) and high-performance liquid chromatography (HPLC) in measuring the concentrations of glutathione and cysteamine. Additionally, the potential of new nanotechnology-based methods, such as plasmonic nanoparticles and quantum dots, to improve the sensitivity of detecting glutathione and cysteamine is emphasized.</p></div>\",\"PeriodicalId\":10205,\"journal\":{\"name\":\"Clinica Chimica Acta\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinica Chimica Acta\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009898124021685\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICAL LABORATORY TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinica Chimica Acta","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009898124021685","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
Unveiling thiol biomarkers: Glutathione and cysteamine
The physiological and clinical importance of Glutathione and Cysteamine is emphasized by their participation in a range of conditions, such as diabetes, cancer, renal failure, Parkinson’s disease, and hypothyroidism. This necessitates the requirement for accessible, expedited, and cost-efficient testing that can facilitate clinical diagnosis and treatment options. This article examines numerous techniques used to detect both glutathione and cysteamine. The discussed methods include electroanalytical techniques such as voltammetry and amperometry, which are examined for their sensitivity and ability to provide real-time analysis. Furthermore, this study investigates the accuracy of gas chromatography-mass spectrometry (GC–MS) and high-performance liquid chromatography (HPLC) in measuring the concentrations of glutathione and cysteamine. Additionally, the potential of new nanotechnology-based methods, such as plasmonic nanoparticles and quantum dots, to improve the sensitivity of detecting glutathione and cysteamine is emphasized.
期刊介绍:
The Official Journal of the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC)
Clinica Chimica Acta is a high-quality journal which publishes original Research Communications in the field of clinical chemistry and laboratory medicine, defined as the diagnostic application of chemistry, biochemistry, immunochemistry, biochemical aspects of hematology, toxicology, and molecular biology to the study of human disease in body fluids and cells.
The objective of the journal is to publish novel information leading to a better understanding of biological mechanisms of human diseases, their prevention, diagnosis, and patient management. Reports of an applied clinical character are also welcome. Papers concerned with normal metabolic processes or with constituents of normal cells or body fluids, such as reports of experimental or clinical studies in animals, are only considered when they are clearly and directly relevant to human disease. Evaluation of commercial products have a low priority for publication, unless they are novel or represent a technological breakthrough. Studies dealing with effects of drugs and natural products and studies dealing with the redox status in various diseases are not within the journal''s scope. Development and evaluation of novel analytical methodologies where applicable to diagnostic clinical chemistry and laboratory medicine, including point-of-care testing, and topics on laboratory management and informatics will also be considered. Studies focused on emerging diagnostic technologies and (big) data analysis procedures including digitalization, mobile Health, and artificial Intelligence applied to Laboratory Medicine are also of interest.