多元伯努利检测器:离散生存分析中的变化点估计。

IF 1.4 4区 数学 Q3 BIOLOGY
Biometrics Pub Date : 2024-07-01 DOI:10.1093/biomtc/ujae075
Willem van den Boom, Maria De Iorio, Fang Qian, Alessandra Guglielmi
{"title":"多元伯努利检测器:离散生存分析中的变化点估计。","authors":"Willem van den Boom, Maria De Iorio, Fang Qian, Alessandra Guglielmi","doi":"10.1093/biomtc/ujae075","DOIUrl":null,"url":null,"abstract":"<p><p>Time-to-event data are often recorded on a discrete scale with multiple, competing risks as potential causes for the event. In this context, application of continuous survival analysis methods with a single risk suffers from biased estimation. Therefore, we propose the multivariate Bernoulli detector for competing risks with discrete times involving a multivariate change point model on the cause-specific baseline hazards. Through the prior on the number of change points and their location, we impose dependence between change points across risks, as well as allowing for data-driven learning of their number. Then, conditionally on these change points, a multivariate Bernoulli prior is used to infer which risks are involved. Focus of posterior inference is cause-specific hazard rates and dependence across risks. Such dependence is often present due to subject-specific changes across time that affect all risks. Full posterior inference is performed through a tailored local-global Markov chain Monte Carlo (MCMC) algorithm, which exploits a data augmentation trick and MCMC updates from nonconjugate Bayesian nonparametric methods. We illustrate our model in simulations and on ICU data, comparing its performance with existing approaches.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"80 3","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The multivariate Bernoulli detector: change point estimation in discrete survival analysis.\",\"authors\":\"Willem van den Boom, Maria De Iorio, Fang Qian, Alessandra Guglielmi\",\"doi\":\"10.1093/biomtc/ujae075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Time-to-event data are often recorded on a discrete scale with multiple, competing risks as potential causes for the event. In this context, application of continuous survival analysis methods with a single risk suffers from biased estimation. Therefore, we propose the multivariate Bernoulli detector for competing risks with discrete times involving a multivariate change point model on the cause-specific baseline hazards. Through the prior on the number of change points and their location, we impose dependence between change points across risks, as well as allowing for data-driven learning of their number. Then, conditionally on these change points, a multivariate Bernoulli prior is used to infer which risks are involved. Focus of posterior inference is cause-specific hazard rates and dependence across risks. Such dependence is often present due to subject-specific changes across time that affect all risks. Full posterior inference is performed through a tailored local-global Markov chain Monte Carlo (MCMC) algorithm, which exploits a data augmentation trick and MCMC updates from nonconjugate Bayesian nonparametric methods. We illustrate our model in simulations and on ICU data, comparing its performance with existing approaches.</p>\",\"PeriodicalId\":8930,\"journal\":{\"name\":\"Biometrics\",\"volume\":\"80 3\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomtc/ujae075\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujae075","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

从时间到事件的数据通常是以离散的尺度记录的,事件的潜在起因是多种相互竞争的风险。在这种情况下,应用单一风险的连续生存分析方法会造成估计偏差。因此,我们提出了针对时间离散的竞争风险的多元伯努利检测器,涉及特定原因基线危害的多元变化点模型。通过对变化点数量及其位置的先验分析,我们在不同风险的变化点之间建立了依赖关系,并允许对变化点数量进行数据驱动学习。然后,以这些变化点为条件,使用多元伯努利先验推断出涉及哪些风险。后验推断的重点是特定病因的危险率和不同风险之间的依赖性。这种依赖性通常是由于特定受试者在不同时期的变化影响了所有风险而产生的。完全后验推断是通过定制的局部-全局马尔科夫链蒙特卡罗(MCMC)算法进行的,该算法利用了数据增强技巧和来自非共轭贝叶斯非参数方法的 MCMC 更新。我们在模拟和重症监护室数据中说明了我们的模型,并将其性能与现有方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The multivariate Bernoulli detector: change point estimation in discrete survival analysis.

Time-to-event data are often recorded on a discrete scale with multiple, competing risks as potential causes for the event. In this context, application of continuous survival analysis methods with a single risk suffers from biased estimation. Therefore, we propose the multivariate Bernoulli detector for competing risks with discrete times involving a multivariate change point model on the cause-specific baseline hazards. Through the prior on the number of change points and their location, we impose dependence between change points across risks, as well as allowing for data-driven learning of their number. Then, conditionally on these change points, a multivariate Bernoulli prior is used to infer which risks are involved. Focus of posterior inference is cause-specific hazard rates and dependence across risks. Such dependence is often present due to subject-specific changes across time that affect all risks. Full posterior inference is performed through a tailored local-global Markov chain Monte Carlo (MCMC) algorithm, which exploits a data augmentation trick and MCMC updates from nonconjugate Bayesian nonparametric methods. We illustrate our model in simulations and on ICU data, comparing its performance with existing approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrics
Biometrics 生物-生物学
CiteScore
2.70
自引率
5.30%
发文量
178
审稿时长
4-8 weeks
期刊介绍: The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信