ChunKi Fong, Marissa Jeme Andersen, Emma Kunesh, Evan Leonard, Donovan Durand, Rachel Coombs, Ana Lidia Flores-Mireles, Caitlin Howell
{"title":"游离液层数量对细菌和蛋白质粘附在注入液体的聚合物上的影响。","authors":"ChunKi Fong, Marissa Jeme Andersen, Emma Kunesh, Evan Leonard, Donovan Durand, Rachel Coombs, Ana Lidia Flores-Mireles, Caitlin Howell","doi":"10.1116/6.0003776","DOIUrl":null,"url":null,"abstract":"<p><p>Liquid-infused polymers are recognized for their ability to repel foulants, making them promising for biomedical applications including catheter-associated urinary tract infections (CAUTIs). However, the impact of the quantity of free liquid layer covering the surface on protein and bacterial adhesion is not well understood. Here, we explore how the amount of free silicone liquid layer in infused silicone catheter materials influences the adhesion of bacteria and proteins relevant to CAUTIs. To alter the quantity of the free liquid layer, we either physically removed excess liquid from fully infused catheter materials or partially infused them. We then evaluated the impact on bacterial and host protein adhesion. Physical removal of the free liquid layer from the fully infused samples reduced the height of the liquid layer from 60 μm to below detection limits and silicone liquid loss into the environment by approximately 64% compared to controls, without significantly increasing the deposition of protein fibrinogen or the adhesion of the common uropathogen Enterococcus faecalis. Partially infused samples showed even greater reductions in liquid loss: samples infused to 70%-80% of their maximum capacity exhibited about an 85% decrease in liquid loss compared to fully infused controls. Notably, samples with more than 70% infusion did not show significant increases in fibrinogen or E. faecalis adhesion. These findings suggest that adjusting the levels of the free liquid layer in infused polymers can influence protein and bacterial adhesion on their surfaces. Moreover, removing the free liquid layer can effectively reduce liquid loss from these polymers while maintaining their functionality.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"19 4","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11324329/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effect of free liquid layer quantity on bacteria and protein adhesion to liquid infused polymers.\",\"authors\":\"ChunKi Fong, Marissa Jeme Andersen, Emma Kunesh, Evan Leonard, Donovan Durand, Rachel Coombs, Ana Lidia Flores-Mireles, Caitlin Howell\",\"doi\":\"10.1116/6.0003776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Liquid-infused polymers are recognized for their ability to repel foulants, making them promising for biomedical applications including catheter-associated urinary tract infections (CAUTIs). However, the impact of the quantity of free liquid layer covering the surface on protein and bacterial adhesion is not well understood. Here, we explore how the amount of free silicone liquid layer in infused silicone catheter materials influences the adhesion of bacteria and proteins relevant to CAUTIs. To alter the quantity of the free liquid layer, we either physically removed excess liquid from fully infused catheter materials or partially infused them. We then evaluated the impact on bacterial and host protein adhesion. Physical removal of the free liquid layer from the fully infused samples reduced the height of the liquid layer from 60 μm to below detection limits and silicone liquid loss into the environment by approximately 64% compared to controls, without significantly increasing the deposition of protein fibrinogen or the adhesion of the common uropathogen Enterococcus faecalis. Partially infused samples showed even greater reductions in liquid loss: samples infused to 70%-80% of their maximum capacity exhibited about an 85% decrease in liquid loss compared to fully infused controls. Notably, samples with more than 70% infusion did not show significant increases in fibrinogen or E. faecalis adhesion. These findings suggest that adjusting the levels of the free liquid layer in infused polymers can influence protein and bacterial adhesion on their surfaces. Moreover, removing the free liquid layer can effectively reduce liquid loss from these polymers while maintaining their functionality.</p>\",\"PeriodicalId\":9053,\"journal\":{\"name\":\"Biointerphases\",\"volume\":\"19 4\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11324329/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biointerphases\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1116/6.0003776\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerphases","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1116/6.0003776","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Effect of free liquid layer quantity on bacteria and protein adhesion to liquid infused polymers.
Liquid-infused polymers are recognized for their ability to repel foulants, making them promising for biomedical applications including catheter-associated urinary tract infections (CAUTIs). However, the impact of the quantity of free liquid layer covering the surface on protein and bacterial adhesion is not well understood. Here, we explore how the amount of free silicone liquid layer in infused silicone catheter materials influences the adhesion of bacteria and proteins relevant to CAUTIs. To alter the quantity of the free liquid layer, we either physically removed excess liquid from fully infused catheter materials or partially infused them. We then evaluated the impact on bacterial and host protein adhesion. Physical removal of the free liquid layer from the fully infused samples reduced the height of the liquid layer from 60 μm to below detection limits and silicone liquid loss into the environment by approximately 64% compared to controls, without significantly increasing the deposition of protein fibrinogen or the adhesion of the common uropathogen Enterococcus faecalis. Partially infused samples showed even greater reductions in liquid loss: samples infused to 70%-80% of their maximum capacity exhibited about an 85% decrease in liquid loss compared to fully infused controls. Notably, samples with more than 70% infusion did not show significant increases in fibrinogen or E. faecalis adhesion. These findings suggest that adjusting the levels of the free liquid layer in infused polymers can influence protein and bacterial adhesion on their surfaces. Moreover, removing the free liquid layer can effectively reduce liquid loss from these polymers while maintaining their functionality.
期刊介绍:
Biointerphases emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays. In addition to regular submissions, the journal regularly features In Focus sections, targeted on specific topics and edited by experts in the field. Biointerphases is an international journal with excellence in scientific peer-review. Biointerphases is indexed in PubMed and the Science Citation Index (Clarivate Analytics). Accepted papers appear online immediately after proof processing and are uploaded to key citation sources daily. The journal is based on a mixed subscription and open-access model: Typically, authors can publish without any page charges but if the authors wish to publish open access, they can do so for a modest fee.
Topics include:
bio-surface modification
nano-bio interface
protein-surface interactions
cell-surface interactions
in vivo and in vitro systems
biofilms / biofouling
biosensors / biodiagnostics
bio on a chip
coatings
interface spectroscopy
biotribology / biorheology
molecular recognition
ambient diagnostic methods
interface modelling
adhesion phenomena.