David P. Pappas, Mark Field, Cameron J. Kopas, Joel A. Howard, Xiqiao Wang, Ella Lachman, Jinsu Oh, Lin Zhou, Alysson Gold, Gregory M. Stiehl, Kameshwar Yadavalli, Eyob A. Sete, Andrew Bestwick, Matthew J. Kramer, Josh Y. Mutus
{"title":"非晶氧化物隧道结的交替偏压辅助退火","authors":"David P. Pappas, Mark Field, Cameron J. Kopas, Joel A. Howard, Xiqiao Wang, Ella Lachman, Jinsu Oh, Lin Zhou, Alysson Gold, Gregory M. Stiehl, Kameshwar Yadavalli, Eyob A. Sete, Andrew Bestwick, Matthew J. Kramer, Josh Y. Mutus","doi":"10.1038/s43246-024-00596-z","DOIUrl":null,"url":null,"abstract":"Superconducting quantum bits (qubits) rely on ultra-thin, amorphous oxide tunneling barriers that can have significant inhomogeneities and defects as grown. This can result in relatively large uncertainties and deleterious effects in the circuits, limiting the scalability. Finding a robust solution to the junction reproducibility problem has been a long-standing goal in the field. Here, we demonstrate a transformational technique for controllably tuning the electrical properties of aluminum-oxide tunnel junctions. This is accomplished using a low-voltage, alternating-bias applied individually to the tunnel junctions, with which resistance tuning by more than 70% can be achieved. The data indicates an improvement of coherence and reduction of two-level system defects. Transmission electron microscopy shows that the treated junctions are predominantly amorphous, albeit with a more uniform distribution of alumina coordination across the barrier. This technique is expected to be useful for other devices based on ionic amorphous materials. Amorphous aluminum oxide tunnel junctions are important for cryogenic and room temperature devices. Here, the authors demonstrate the use of alternating-bias-assisted annealing for transforming and tuning transmon qubit junctions, where giant increases in excess of 70% in the room temperature resistance can be achieved.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00596-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Alternating-bias assisted annealing of amorphous oxide tunnel junctions\",\"authors\":\"David P. Pappas, Mark Field, Cameron J. Kopas, Joel A. Howard, Xiqiao Wang, Ella Lachman, Jinsu Oh, Lin Zhou, Alysson Gold, Gregory M. Stiehl, Kameshwar Yadavalli, Eyob A. Sete, Andrew Bestwick, Matthew J. Kramer, Josh Y. Mutus\",\"doi\":\"10.1038/s43246-024-00596-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Superconducting quantum bits (qubits) rely on ultra-thin, amorphous oxide tunneling barriers that can have significant inhomogeneities and defects as grown. This can result in relatively large uncertainties and deleterious effects in the circuits, limiting the scalability. Finding a robust solution to the junction reproducibility problem has been a long-standing goal in the field. Here, we demonstrate a transformational technique for controllably tuning the electrical properties of aluminum-oxide tunnel junctions. This is accomplished using a low-voltage, alternating-bias applied individually to the tunnel junctions, with which resistance tuning by more than 70% can be achieved. The data indicates an improvement of coherence and reduction of two-level system defects. Transmission electron microscopy shows that the treated junctions are predominantly amorphous, albeit with a more uniform distribution of alumina coordination across the barrier. This technique is expected to be useful for other devices based on ionic amorphous materials. Amorphous aluminum oxide tunnel junctions are important for cryogenic and room temperature devices. Here, the authors demonstrate the use of alternating-bias-assisted annealing for transforming and tuning transmon qubit junctions, where giant increases in excess of 70% in the room temperature resistance can be achieved.\",\"PeriodicalId\":10589,\"journal\":{\"name\":\"Communications Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s43246-024-00596-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43246-024-00596-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00596-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Alternating-bias assisted annealing of amorphous oxide tunnel junctions
Superconducting quantum bits (qubits) rely on ultra-thin, amorphous oxide tunneling barriers that can have significant inhomogeneities and defects as grown. This can result in relatively large uncertainties and deleterious effects in the circuits, limiting the scalability. Finding a robust solution to the junction reproducibility problem has been a long-standing goal in the field. Here, we demonstrate a transformational technique for controllably tuning the electrical properties of aluminum-oxide tunnel junctions. This is accomplished using a low-voltage, alternating-bias applied individually to the tunnel junctions, with which resistance tuning by more than 70% can be achieved. The data indicates an improvement of coherence and reduction of two-level system defects. Transmission electron microscopy shows that the treated junctions are predominantly amorphous, albeit with a more uniform distribution of alumina coordination across the barrier. This technique is expected to be useful for other devices based on ionic amorphous materials. Amorphous aluminum oxide tunnel junctions are important for cryogenic and room temperature devices. Here, the authors demonstrate the use of alternating-bias-assisted annealing for transforming and tuning transmon qubit junctions, where giant increases in excess of 70% in the room temperature resistance can be achieved.
期刊介绍:
Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.