非晶氧化物隧道结的交替偏压辅助退火

IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
David P. Pappas, Mark Field, Cameron J. Kopas, Joel A. Howard, Xiqiao Wang, Ella Lachman, Jinsu Oh, Lin Zhou, Alysson Gold, Gregory M. Stiehl, Kameshwar Yadavalli, Eyob A. Sete, Andrew Bestwick, Matthew J. Kramer, Josh Y. Mutus
{"title":"非晶氧化物隧道结的交替偏压辅助退火","authors":"David P. Pappas, Mark Field, Cameron J. Kopas, Joel A. Howard, Xiqiao Wang, Ella Lachman, Jinsu Oh, Lin Zhou, Alysson Gold, Gregory M. Stiehl, Kameshwar Yadavalli, Eyob A. Sete, Andrew Bestwick, Matthew J. Kramer, Josh Y. Mutus","doi":"10.1038/s43246-024-00596-z","DOIUrl":null,"url":null,"abstract":"Superconducting quantum bits (qubits) rely on ultra-thin, amorphous oxide tunneling barriers that can have significant inhomogeneities and defects as grown. This can result in relatively large uncertainties and deleterious effects in the circuits, limiting the scalability. Finding a robust solution to the junction reproducibility problem has been a long-standing goal in the field. Here, we demonstrate a transformational technique for controllably tuning the electrical properties of aluminum-oxide tunnel junctions. This is accomplished using a low-voltage, alternating-bias applied individually to the tunnel junctions, with which resistance tuning by more than 70% can be achieved. The data indicates an improvement of coherence and reduction of two-level system defects. Transmission electron microscopy shows that the treated junctions are predominantly amorphous, albeit with a more uniform distribution of alumina coordination across the barrier. This technique is expected to be useful for other devices based on ionic amorphous materials. Amorphous aluminum oxide tunnel junctions are important for cryogenic and room temperature devices. Here, the authors demonstrate the use of alternating-bias-assisted annealing for transforming and tuning transmon qubit junctions, where giant increases in excess of 70% in the room temperature resistance can be achieved.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00596-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Alternating-bias assisted annealing of amorphous oxide tunnel junctions\",\"authors\":\"David P. Pappas, Mark Field, Cameron J. Kopas, Joel A. Howard, Xiqiao Wang, Ella Lachman, Jinsu Oh, Lin Zhou, Alysson Gold, Gregory M. Stiehl, Kameshwar Yadavalli, Eyob A. Sete, Andrew Bestwick, Matthew J. Kramer, Josh Y. Mutus\",\"doi\":\"10.1038/s43246-024-00596-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Superconducting quantum bits (qubits) rely on ultra-thin, amorphous oxide tunneling barriers that can have significant inhomogeneities and defects as grown. This can result in relatively large uncertainties and deleterious effects in the circuits, limiting the scalability. Finding a robust solution to the junction reproducibility problem has been a long-standing goal in the field. Here, we demonstrate a transformational technique for controllably tuning the electrical properties of aluminum-oxide tunnel junctions. This is accomplished using a low-voltage, alternating-bias applied individually to the tunnel junctions, with which resistance tuning by more than 70% can be achieved. The data indicates an improvement of coherence and reduction of two-level system defects. Transmission electron microscopy shows that the treated junctions are predominantly amorphous, albeit with a more uniform distribution of alumina coordination across the barrier. This technique is expected to be useful for other devices based on ionic amorphous materials. Amorphous aluminum oxide tunnel junctions are important for cryogenic and room temperature devices. Here, the authors demonstrate the use of alternating-bias-assisted annealing for transforming and tuning transmon qubit junctions, where giant increases in excess of 70% in the room temperature resistance can be achieved.\",\"PeriodicalId\":10589,\"journal\":{\"name\":\"Communications Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s43246-024-00596-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43246-024-00596-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00596-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

超导量子比特(量子比特)依赖于超薄的非晶氧化物隧道势垒,这种势垒在生长过程中可能存在严重的不均匀性和缺陷。这会导致电路中出现相对较大的不确定性和有害效应,从而限制了可扩展性。为结点可重复性问题找到稳健的解决方案一直是该领域的长期目标。在这里,我们展示了一种可控调节铝氧化物隧道结电气特性的变革性技术。该技术通过对隧道结单独施加低电压、交替偏压来实现,电阻调整率超过 70%。数据显示,相干性得到改善,两级系统缺陷减少。透射电子显微镜显示,尽管氧化铝配位在整个势垒上的分布更加均匀,但经过处理的结主要是无定形的。这项技术有望用于其他基于离子非晶材料的器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Alternating-bias assisted annealing of amorphous oxide tunnel junctions

Alternating-bias assisted annealing of amorphous oxide tunnel junctions

Alternating-bias assisted annealing of amorphous oxide tunnel junctions
Superconducting quantum bits (qubits) rely on ultra-thin, amorphous oxide tunneling barriers that can have significant inhomogeneities and defects as grown. This can result in relatively large uncertainties and deleterious effects in the circuits, limiting the scalability. Finding a robust solution to the junction reproducibility problem has been a long-standing goal in the field. Here, we demonstrate a transformational technique for controllably tuning the electrical properties of aluminum-oxide tunnel junctions. This is accomplished using a low-voltage, alternating-bias applied individually to the tunnel junctions, with which resistance tuning by more than 70% can be achieved. The data indicates an improvement of coherence and reduction of two-level system defects. Transmission electron microscopy shows that the treated junctions are predominantly amorphous, albeit with a more uniform distribution of alumina coordination across the barrier. This technique is expected to be useful for other devices based on ionic amorphous materials. Amorphous aluminum oxide tunnel junctions are important for cryogenic and room temperature devices. Here, the authors demonstrate the use of alternating-bias-assisted annealing for transforming and tuning transmon qubit junctions, where giant increases in excess of 70% in the room temperature resistance can be achieved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Materials
Communications Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
12.10
自引率
1.30%
发文量
85
审稿时长
17 weeks
期刊介绍: Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信