有限应变下各向异性损伤的微形态梯度拉伸比较研究

IF 2.7 3区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Tim van der Velden, Tim Brepols, Stefanie Reese, Hagen Holthusen
{"title":"有限应变下各向异性损伤的微形态梯度拉伸比较研究","authors":"Tim van der Velden,&nbsp;Tim Brepols,&nbsp;Stefanie Reese,&nbsp;Hagen Holthusen","doi":"10.1002/nme.7580","DOIUrl":null,"url":null,"abstract":"<p>Modern inelastic material model formulations rely on the use of tensor-valued internal variables. When inelastic phenomena include softening, simulations of the former are prone to localization. Thus, an accurate regularization of the tensor-valued internal variables is essential to obtain physically correct results. Here, we focus on the regularization of anisotropic damage at finite strains. Thus, a flexible anisotropic damage model with isotropic, kinematic, and distortional hardening is equipped with three gradient-extensions using a full and two reduced regularizations of the damage tensor. Theoretical and numerical comparisons of the three gradient-extensions yield excellent agreement between the full and the reduced regularization based on a volumetric-deviatoric regularization using only two nonlocal degrees of freedom.</p>","PeriodicalId":13699,"journal":{"name":"International Journal for Numerical Methods in Engineering","volume":"125 24","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/nme.7580","citationCount":"0","resultStr":"{\"title\":\"A comparative study of micromorphic gradient-extensions for anisotropic damage at finite strains\",\"authors\":\"Tim van der Velden,&nbsp;Tim Brepols,&nbsp;Stefanie Reese,&nbsp;Hagen Holthusen\",\"doi\":\"10.1002/nme.7580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Modern inelastic material model formulations rely on the use of tensor-valued internal variables. When inelastic phenomena include softening, simulations of the former are prone to localization. Thus, an accurate regularization of the tensor-valued internal variables is essential to obtain physically correct results. Here, we focus on the regularization of anisotropic damage at finite strains. Thus, a flexible anisotropic damage model with isotropic, kinematic, and distortional hardening is equipped with three gradient-extensions using a full and two reduced regularizations of the damage tensor. Theoretical and numerical comparisons of the three gradient-extensions yield excellent agreement between the full and the reduced regularization based on a volumetric-deviatoric regularization using only two nonlocal degrees of freedom.</p>\",\"PeriodicalId\":13699,\"journal\":{\"name\":\"International Journal for Numerical Methods in Engineering\",\"volume\":\"125 24\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/nme.7580\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/nme.7580\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nme.7580","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

现代非弹性材料模型公式依赖于张量值内部变量的使用。当非弹性现象包括软化时,对前者的模拟容易出现局部化。因此,张量值内部变量的精确正则化对于获得物理上正确的结果至关重要。在此,我们重点讨论有限应变下各向异性损伤的正则化问题。因此,一个具有各向同性、运动学和变形硬化的柔性各向异性损伤模型配备了三个梯度扩展,使用损伤张量的一个完全正则化和两个简化正则化。通过对这三种梯度扩展进行理论和数值比较,发现完全正则化和基于容积-偏差正则化的简化正则化(仅使用两个非局部自由度)之间具有极佳的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A comparative study of micromorphic gradient-extensions for anisotropic damage at finite strains

A comparative study of micromorphic gradient-extensions for anisotropic damage at finite strains

Modern inelastic material model formulations rely on the use of tensor-valued internal variables. When inelastic phenomena include softening, simulations of the former are prone to localization. Thus, an accurate regularization of the tensor-valued internal variables is essential to obtain physically correct results. Here, we focus on the regularization of anisotropic damage at finite strains. Thus, a flexible anisotropic damage model with isotropic, kinematic, and distortional hardening is equipped with three gradient-extensions using a full and two reduced regularizations of the damage tensor. Theoretical and numerical comparisons of the three gradient-extensions yield excellent agreement between the full and the reduced regularization based on a volumetric-deviatoric regularization using only two nonlocal degrees of freedom.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
6.90%
发文量
276
审稿时长
5.3 months
期刊介绍: The International Journal for Numerical Methods in Engineering publishes original papers describing significant, novel developments in numerical methods that are applicable to engineering problems. The Journal is known for welcoming contributions in a wide range of areas in computational engineering, including computational issues in model reduction, uncertainty quantification, verification and validation, inverse analysis and stochastic methods, optimisation, element technology, solution techniques and parallel computing, damage and fracture, mechanics at micro and nano-scales, low-speed fluid dynamics, fluid-structure interaction, electromagnetics, coupled diffusion phenomena, and error estimation and mesh generation. It is emphasized that this is by no means an exhaustive list, and particularly papers on multi-scale, multi-physics or multi-disciplinary problems, and on new, emerging topics are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信