有机离子和电子混合导体中静电紊乱的动态性质

IF 10.7 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Colm Burke, Alessandro Landi and Alessandro Troisi
{"title":"有机离子和电子混合导体中静电紊乱的动态性质","authors":"Colm Burke, Alessandro Landi and Alessandro Troisi","doi":"10.1039/D4MH00706A","DOIUrl":null,"url":null,"abstract":"<p >Charge dynamics in disordered media is described invariably assuming that the energy landscape for hopping site energy is stationary. Within the same framework, the correlation between low electronic disorder and high charge mobility is considered extremely robust, despite the emergence of materials with mixed ionic and electronic conductivity (OMIECs) that display high mobility coexisting with large disorder. We show in this work that the disorder of OMIEC polymers is highly dynamical, <em>i.e.</em> the on-site energy for charge transport fluctuates with a characteristic time comparable with that of electron transport. Under these conditions, the disorder of the “frozen” system is not relevant for the charge carrier, whose dynamics are instead controlled by the underlying dynamics of the material. Deep traps exist but have a finite lifetime. The combination of classical simulations and quantum chemical calculations on the nanosecond timescale seems ideal to disclose and characterise the phenomenon.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" 21","pages":" 5313-5319"},"PeriodicalIF":10.7000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/mh/d4mh00706a?page=search","citationCount":"0","resultStr":"{\"title\":\"The dynamic nature of electrostatic disorder in organic mixed ionic and electronic conductors†\",\"authors\":\"Colm Burke, Alessandro Landi and Alessandro Troisi\",\"doi\":\"10.1039/D4MH00706A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Charge dynamics in disordered media is described invariably assuming that the energy landscape for hopping site energy is stationary. Within the same framework, the correlation between low electronic disorder and high charge mobility is considered extremely robust, despite the emergence of materials with mixed ionic and electronic conductivity (OMIECs) that display high mobility coexisting with large disorder. We show in this work that the disorder of OMIEC polymers is highly dynamical, <em>i.e.</em> the on-site energy for charge transport fluctuates with a characteristic time comparable with that of electron transport. Under these conditions, the disorder of the “frozen” system is not relevant for the charge carrier, whose dynamics are instead controlled by the underlying dynamics of the material. Deep traps exist but have a finite lifetime. The combination of classical simulations and quantum chemical calculations on the nanosecond timescale seems ideal to disclose and characterise the phenomenon.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" 21\",\"pages\":\" 5313-5319\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/mh/d4mh00706a?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/mh/d4mh00706a\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/mh/d4mh00706a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在描述无序介质中的电荷动力学时,总是假定跳跃位点能的能谱是静止的。在同一框架内,低电子无序性与高电荷迁移率之间的相关性被认为是极其稳健的,尽管出现了具有混合离子和电子导电性(OMIEC)的材料,它们显示出与大无序性共存的高迁移率。我们在这项研究中表明,OMIEC 聚合物的无序性是高度动态的,即电荷传输的现场能量波动的特征时间与电子传输的特征时间相当。在这些条件下,"冻结 "系统的无序性与电荷载流子无关,其动态反而受控于材料的底层动态。深阱是存在的,但其寿命是有限的。纳秒级的经典模拟与量子化学计算相结合,似乎是揭示和描述这一现象的理想方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The dynamic nature of electrostatic disorder in organic mixed ionic and electronic conductors†

The dynamic nature of electrostatic disorder in organic mixed ionic and electronic conductors†

Charge dynamics in disordered media is described invariably assuming that the energy landscape for hopping site energy is stationary. Within the same framework, the correlation between low electronic disorder and high charge mobility is considered extremely robust, despite the emergence of materials with mixed ionic and electronic conductivity (OMIECs) that display high mobility coexisting with large disorder. We show in this work that the disorder of OMIEC polymers is highly dynamical, i.e. the on-site energy for charge transport fluctuates with a characteristic time comparable with that of electron transport. Under these conditions, the disorder of the “frozen” system is not relevant for the charge carrier, whose dynamics are instead controlled by the underlying dynamics of the material. Deep traps exist but have a finite lifetime. The combination of classical simulations and quantum chemical calculations on the nanosecond timescale seems ideal to disclose and characterise the phenomenon.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信