Xiuli Zheng, Junming Liu, Le Wang, Si Chen and Zhiling Liu
{"title":"开发声辐射驱动的泵喷射压电游泳器","authors":"Xiuli Zheng, Junming Liu, Le Wang, Si Chen and Zhiling Liu","doi":"10.1088/1361-665x/ad6962","DOIUrl":null,"url":null,"abstract":"The acoustofluidic actuation produced by piezoelectric transducer is capable of propelling micro underwater robots forward, yet the motion pattern is relatively simplistic. To solve this problem, a pump-jet swimmer with a combination of the underwater acoustic radiation effect is proposed in this work. The absorption and discharge of internal piezoelectric pump provide the linear forward power, and turning is achieved under the acoustic propulsive force of the external dual piezoelectric actuators. The working mode and optimal driving frequency of the piezoelectric actuators are determined through finite element simulation and mechanical vibration characteristic tests. And the key dimensional parameters of the piezoelectric pump are optimized in the light of the output flow measurements. Finally, a prototype with the size of Ф3.1 cm × 12 cm is fabricated for underwater driving performance experiments, which demonstrated well functions in straight swimming, turning, and loading. The swimmer with 20 g of additional load achieves a maximum speed of 105 mm s−1at the voltage of 180 Vp-p, it also completes the obstacle avoidance in water along a certain path. The rationality of this conceived actuation mechanism is preliminarily verified, which shows a potential for fixed-point transportation in the complex underwater situations.","PeriodicalId":21656,"journal":{"name":"Smart Materials and Structures","volume":"45 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a pump-jet piezoelectric swimmer with acoustic radiation actuation\",\"authors\":\"Xiuli Zheng, Junming Liu, Le Wang, Si Chen and Zhiling Liu\",\"doi\":\"10.1088/1361-665x/ad6962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The acoustofluidic actuation produced by piezoelectric transducer is capable of propelling micro underwater robots forward, yet the motion pattern is relatively simplistic. To solve this problem, a pump-jet swimmer with a combination of the underwater acoustic radiation effect is proposed in this work. The absorption and discharge of internal piezoelectric pump provide the linear forward power, and turning is achieved under the acoustic propulsive force of the external dual piezoelectric actuators. The working mode and optimal driving frequency of the piezoelectric actuators are determined through finite element simulation and mechanical vibration characteristic tests. And the key dimensional parameters of the piezoelectric pump are optimized in the light of the output flow measurements. Finally, a prototype with the size of Ф3.1 cm × 12 cm is fabricated for underwater driving performance experiments, which demonstrated well functions in straight swimming, turning, and loading. The swimmer with 20 g of additional load achieves a maximum speed of 105 mm s−1at the voltage of 180 Vp-p, it also completes the obstacle avoidance in water along a certain path. The rationality of this conceived actuation mechanism is preliminarily verified, which shows a potential for fixed-point transportation in the complex underwater situations.\",\"PeriodicalId\":21656,\"journal\":{\"name\":\"Smart Materials and Structures\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Materials and Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-665x/ad6962\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-665x/ad6962","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
摘要
压电传感器产生的声流体驱动能够推动微型水下机器人前进,但其运动模式相对简单。为解决这一问题,本文提出了一种结合水下声辐射效应的泵喷式游泳器。内部压电泵的吸收和放电提供线性前进动力,在外部双压电致动器的声学推进力作用下实现转弯。通过有限元模拟和机械振动特性测试,确定了压电致动器的工作模式和最佳驱动频率。并根据输出流量测量结果对压电泵的关键尺寸参数进行了优化。最后,制作了一个尺寸为 Ф3.1 cm × 12 cm 的原型,用于水下驱动性能实验。在电压为 180 Vp-p 的情况下,附加 20 g 负荷的游泳器达到了 105 mm s-1 的最大速度,并能在水中沿一定路径避开障碍物。初步验证了这一构想的驱动机制的合理性,显示了在复杂的水下环境中进行定点运输的潜力。
Development of a pump-jet piezoelectric swimmer with acoustic radiation actuation
The acoustofluidic actuation produced by piezoelectric transducer is capable of propelling micro underwater robots forward, yet the motion pattern is relatively simplistic. To solve this problem, a pump-jet swimmer with a combination of the underwater acoustic radiation effect is proposed in this work. The absorption and discharge of internal piezoelectric pump provide the linear forward power, and turning is achieved under the acoustic propulsive force of the external dual piezoelectric actuators. The working mode and optimal driving frequency of the piezoelectric actuators are determined through finite element simulation and mechanical vibration characteristic tests. And the key dimensional parameters of the piezoelectric pump are optimized in the light of the output flow measurements. Finally, a prototype with the size of Ф3.1 cm × 12 cm is fabricated for underwater driving performance experiments, which demonstrated well functions in straight swimming, turning, and loading. The swimmer with 20 g of additional load achieves a maximum speed of 105 mm s−1at the voltage of 180 Vp-p, it also completes the obstacle avoidance in water along a certain path. The rationality of this conceived actuation mechanism is preliminarily verified, which shows a potential for fixed-point transportation in the complex underwater situations.
期刊介绍:
Smart Materials and Structures (SMS) is a multi-disciplinary engineering journal that explores the creation and utilization of novel forms of transduction. It is a leading journal in the area of smart materials and structures, publishing the most important results from different regions of the world, largely from Asia, Europe and North America. The results may be as disparate as the development of new materials and active composite systems, derived using theoretical predictions to complex structural systems, which generate new capabilities by incorporating enabling new smart material transducers. The theoretical predictions are usually accompanied with experimental verification, characterizing the performance of new structures and devices. These systems are examined from the nanoscale to the macroscopic. SMS has a Board of Associate Editors who are specialists in a multitude of areas, ensuring that reviews are fast, fair and performed by experts in all sub-disciplines of smart materials, systems and structures.
A smart material is defined as any material that is capable of being controlled such that its response and properties change under a stimulus. A smart structure or system is capable of reacting to stimuli or the environment in a prescribed manner. SMS is committed to understanding, expanding and dissemination of knowledge in this subject matter.