对流主导扩散问题的超局部正交分解

IF 1.6 3区 数学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Francesca Bonizzoni, Philip Freese, Daniel Peterseim
{"title":"对流主导扩散问题的超局部正交分解","authors":"Francesca Bonizzoni, Philip Freese, Daniel Peterseim","doi":"10.1007/s10543-024-01035-8","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a novel multi-scale method for convection-dominated diffusion problems in the regime of large Péclet numbers. The method involves applying the solution operator to piecewise constant right-hand sides on an arbitrary coarse mesh, which defines a finite-dimensional coarse ansatz space with favorable approximation properties. For some relevant error measures, including the <span>\\(L^2\\)</span>-norm, the Galerkin projection onto this generalized finite element space even yields <span>\\(\\varepsilon \\)</span>-independent error bounds, <span>\\(\\varepsilon \\)</span> being the singular perturbation parameter. By constructing an approximate local basis, the approach becomes a novel multi-scale method in the spirit of the Super-Localized Orthogonal Decomposition (SLOD). The error caused by basis localization can be estimated in an a posteriori way. In contrast to existing multi-scale methods, numerical experiments indicate <span>\\(\\varepsilon \\)</span>-robust convergence without pre-asymptotic effects even in the under-resolved regime of large mesh Péclet numbers.</p>","PeriodicalId":55351,"journal":{"name":"BIT Numerical Mathematics","volume":"19 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Super-localized orthogonal decomposition for convection-dominated diffusion problems\",\"authors\":\"Francesca Bonizzoni, Philip Freese, Daniel Peterseim\",\"doi\":\"10.1007/s10543-024-01035-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper presents a novel multi-scale method for convection-dominated diffusion problems in the regime of large Péclet numbers. The method involves applying the solution operator to piecewise constant right-hand sides on an arbitrary coarse mesh, which defines a finite-dimensional coarse ansatz space with favorable approximation properties. For some relevant error measures, including the <span>\\\\(L^2\\\\)</span>-norm, the Galerkin projection onto this generalized finite element space even yields <span>\\\\(\\\\varepsilon \\\\)</span>-independent error bounds, <span>\\\\(\\\\varepsilon \\\\)</span> being the singular perturbation parameter. By constructing an approximate local basis, the approach becomes a novel multi-scale method in the spirit of the Super-Localized Orthogonal Decomposition (SLOD). The error caused by basis localization can be estimated in an a posteriori way. In contrast to existing multi-scale methods, numerical experiments indicate <span>\\\\(\\\\varepsilon \\\\)</span>-robust convergence without pre-asymptotic effects even in the under-resolved regime of large mesh Péclet numbers.</p>\",\"PeriodicalId\":55351,\"journal\":{\"name\":\"BIT Numerical Mathematics\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BIT Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10543-024-01035-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BIT Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10543-024-01035-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新颖的多尺度方法,用于解决大佩克莱特数条件下对流主导的扩散问题。该方法将解算子应用于任意粗网格上的片断常数右边,定义了一个具有良好近似特性的有限维粗安萨兹空间。对于一些相关的误差度量,包括(L^2)-norm,Galerkin投影到这个广义有限元空间甚至可以得到(varepsilon)独立的误差边界,(varepsilon)是奇异扰动参数。通过构建近似局部基础,该方法成为一种新颖的多尺度方法,与超局部正交分解(SLOD)的精神一脉相承。基础局部化引起的误差可以通过后验方法进行估计。与现有的多尺度方法相比,数值实验表明,即使在大网格贝克莱特数的欠分辨机制下,也没有预渐近效应,收敛性很强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Super-localized orthogonal decomposition for convection-dominated diffusion problems

Super-localized orthogonal decomposition for convection-dominated diffusion problems

This paper presents a novel multi-scale method for convection-dominated diffusion problems in the regime of large Péclet numbers. The method involves applying the solution operator to piecewise constant right-hand sides on an arbitrary coarse mesh, which defines a finite-dimensional coarse ansatz space with favorable approximation properties. For some relevant error measures, including the \(L^2\)-norm, the Galerkin projection onto this generalized finite element space even yields \(\varepsilon \)-independent error bounds, \(\varepsilon \) being the singular perturbation parameter. By constructing an approximate local basis, the approach becomes a novel multi-scale method in the spirit of the Super-Localized Orthogonal Decomposition (SLOD). The error caused by basis localization can be estimated in an a posteriori way. In contrast to existing multi-scale methods, numerical experiments indicate \(\varepsilon \)-robust convergence without pre-asymptotic effects even in the under-resolved regime of large mesh Péclet numbers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BIT Numerical Mathematics
BIT Numerical Mathematics 数学-计算机:软件工程
CiteScore
2.90
自引率
0.00%
发文量
38
审稿时长
6 months
期刊介绍: The journal BIT has been published since 1961. BIT publishes original research papers in the rapidly developing field of numerical analysis. The essential areas covered by BIT are development and analysis of numerical methods as well as the design and use of algorithms for scientific computing. Topics emphasized by BIT include numerical methods in approximation, linear algebra, and ordinary and partial differential equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信