利用各种函数类的分数牛顿型积分不等式

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Fatih Hezenci, Hüseyin Budak
{"title":"利用各种函数类的分数牛顿型积分不等式","authors":"Fatih Hezenci, Hüseyin Budak","doi":"10.1002/mma.10378","DOIUrl":null,"url":null,"abstract":"The authors of the paper present a method to examine some Newton‐type inequalities for various function classes using Riemann‐Liouville fractional integrals. Namely, some fractional Newton‐type inequalities are established by using convex functions. In addition, several fractional Newton‐type inequalities are proved by using bounded functions by fractional integrals. Moreover, we construct some fractional Newton‐type inequalities for Lipschitzian functions. Furthermore, several Newton‐type inequalities are acquired by fractional integrals of bounded variation. Finally, we provide our results by using special cases of obtained theorems and examples.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional Newton‐type integral inequalities by means of various function classes\",\"authors\":\"Fatih Hezenci, Hüseyin Budak\",\"doi\":\"10.1002/mma.10378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors of the paper present a method to examine some Newton‐type inequalities for various function classes using Riemann‐Liouville fractional integrals. Namely, some fractional Newton‐type inequalities are established by using convex functions. In addition, several fractional Newton‐type inequalities are proved by using bounded functions by fractional integrals. Moreover, we construct some fractional Newton‐type inequalities for Lipschitzian functions. Furthermore, several Newton‐type inequalities are acquired by fractional integrals of bounded variation. Finally, we provide our results by using special cases of obtained theorems and examples.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/mma.10378\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/mma.10378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文作者提出了一种方法,利用黎曼-刘维尔分数积分来研究各种函数类的一些牛顿型不等式。也就是说,利用凸函数建立了一些分数牛顿型不等式。此外,通过分数积分使用有界函数证明了几个分数牛顿型不等式。此外,我们还为 Lipschitzian 函数构建了一些分数牛顿型不等式。此外,我们还通过有界变分积分获得了几个牛顿型不等式。最后,我们利用所获定理的特例和示例给出了我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractional Newton‐type integral inequalities by means of various function classes
The authors of the paper present a method to examine some Newton‐type inequalities for various function classes using Riemann‐Liouville fractional integrals. Namely, some fractional Newton‐type inequalities are established by using convex functions. In addition, several fractional Newton‐type inequalities are proved by using bounded functions by fractional integrals. Moreover, we construct some fractional Newton‐type inequalities for Lipschitzian functions. Furthermore, several Newton‐type inequalities are acquired by fractional integrals of bounded variation. Finally, we provide our results by using special cases of obtained theorems and examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信