{"title":"原子与超短激光脉冲相互作用的吸收和发射概率","authors":"I. A. Aleksandrov, D. V. Chubukov, N. N. Rosanov","doi":"10.1134/S0030400X24020012","DOIUrl":null,"url":null,"abstract":"<p>We consider the process of transition of a two-level system to the excited state with subsequent photon emission in the presence of a laser pulse with a high degree of unipolarity. Within the framework of quantum electrodynamics, we obtain analytical expressions for the differential probability of the process depending on the temporal scales of the problem: laser pulse duration, excited-state lifetime, inverse transition frequency, and inverse frequency of the photon emitted. Besides, we calculate the total absorption probability by integrating over the three-dimensional photon momentum and summing over polarizations. We compare the results obtained for unipolar and bipolar (many-cycle) pulses.</p>","PeriodicalId":723,"journal":{"name":"Optics and Spectroscopy","volume":"132 2","pages":"81 - 85"},"PeriodicalIF":0.8000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probability of Absorption and Emission by an Atom Interacting with Ultrashort Laser Pulses\",\"authors\":\"I. A. Aleksandrov, D. V. Chubukov, N. N. Rosanov\",\"doi\":\"10.1134/S0030400X24020012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the process of transition of a two-level system to the excited state with subsequent photon emission in the presence of a laser pulse with a high degree of unipolarity. Within the framework of quantum electrodynamics, we obtain analytical expressions for the differential probability of the process depending on the temporal scales of the problem: laser pulse duration, excited-state lifetime, inverse transition frequency, and inverse frequency of the photon emitted. Besides, we calculate the total absorption probability by integrating over the three-dimensional photon momentum and summing over polarizations. We compare the results obtained for unipolar and bipolar (many-cycle) pulses.</p>\",\"PeriodicalId\":723,\"journal\":{\"name\":\"Optics and Spectroscopy\",\"volume\":\"132 2\",\"pages\":\"81 - 85\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics and Spectroscopy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0030400X24020012\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Spectroscopy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0030400X24020012","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
Probability of Absorption and Emission by an Atom Interacting with Ultrashort Laser Pulses
We consider the process of transition of a two-level system to the excited state with subsequent photon emission in the presence of a laser pulse with a high degree of unipolarity. Within the framework of quantum electrodynamics, we obtain analytical expressions for the differential probability of the process depending on the temporal scales of the problem: laser pulse duration, excited-state lifetime, inverse transition frequency, and inverse frequency of the photon emitted. Besides, we calculate the total absorption probability by integrating over the three-dimensional photon momentum and summing over polarizations. We compare the results obtained for unipolar and bipolar (many-cycle) pulses.
期刊介绍:
Optics and Spectroscopy (Optika i spektroskopiya), founded in 1956, presents original and review papers in various fields of modern optics and spectroscopy in the entire wavelength range from radio waves to X-rays. Topics covered include problems of theoretical and experimental spectroscopy of atoms, molecules, and condensed state, lasers and the interaction of laser radiation with matter, physical and geometrical optics, holography, and physical principles of optical instrument making.