{"title":"GaN HEMT 的改进型非线性 I-V 模型","authors":"Qingyu Yuan, Yixin Zhang, Xiaodong Luan, Jun Zhang, Chunxu Xie, Jiali Cheng","doi":"10.1155/2024/8834864","DOIUrl":null,"url":null,"abstract":"<p>In this article, an improved nonlinear model for gallium nitride high-electron-mobility transistors (GaN HEMTs) is proposed. Aiming at the problem of insufficient accuracy of the nonlinear DC model caused by the self-heating effect and trap effect in the traditional model, this thesis uses the Softplus function to improve the traditional nonlinear DC model and establishes a nonlinear DC model including the self-heating effect, which is verified by the three GaN HEMT devices of different sizes. The MSE of <i>I</i><sub>ds</sub> is less than 2.44 × 10<sup>−6</sup>. The traditional empirical basis model needs to calculate the partial derivative of the current expression with respect to <i>V</i><sub>ds</sub>, which is tedious and complicated. The proposed model can be directly used to fit the <i>G</i><sub><i>m</i></sub>. The verification results show that the MSE of the <i>G</i><sub><i>m</i></sub> is less than 1.07 × 10<sup>−4</sup>, which proves the effectiveness of the equation.</p>","PeriodicalId":54944,"journal":{"name":"International Journal of RF and Microwave Computer-Aided Engineering","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/8834864","citationCount":"0","resultStr":"{\"title\":\"An Improved Nonlinear I-V Model for GaN HEMTs\",\"authors\":\"Qingyu Yuan, Yixin Zhang, Xiaodong Luan, Jun Zhang, Chunxu Xie, Jiali Cheng\",\"doi\":\"10.1155/2024/8834864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, an improved nonlinear model for gallium nitride high-electron-mobility transistors (GaN HEMTs) is proposed. Aiming at the problem of insufficient accuracy of the nonlinear DC model caused by the self-heating effect and trap effect in the traditional model, this thesis uses the Softplus function to improve the traditional nonlinear DC model and establishes a nonlinear DC model including the self-heating effect, which is verified by the three GaN HEMT devices of different sizes. The MSE of <i>I</i><sub>ds</sub> is less than 2.44 × 10<sup>−6</sup>. The traditional empirical basis model needs to calculate the partial derivative of the current expression with respect to <i>V</i><sub>ds</sub>, which is tedious and complicated. The proposed model can be directly used to fit the <i>G</i><sub><i>m</i></sub>. The verification results show that the MSE of the <i>G</i><sub><i>m</i></sub> is less than 1.07 × 10<sup>−4</sup>, which proves the effectiveness of the equation.</p>\",\"PeriodicalId\":54944,\"journal\":{\"name\":\"International Journal of RF and Microwave Computer-Aided Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/8834864\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of RF and Microwave Computer-Aided Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/8834864\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of RF and Microwave Computer-Aided Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/8834864","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
In this article, an improved nonlinear model for gallium nitride high-electron-mobility transistors (GaN HEMTs) is proposed. Aiming at the problem of insufficient accuracy of the nonlinear DC model caused by the self-heating effect and trap effect in the traditional model, this thesis uses the Softplus function to improve the traditional nonlinear DC model and establishes a nonlinear DC model including the self-heating effect, which is verified by the three GaN HEMT devices of different sizes. The MSE of Ids is less than 2.44 × 10−6. The traditional empirical basis model needs to calculate the partial derivative of the current expression with respect to Vds, which is tedious and complicated. The proposed model can be directly used to fit the Gm. The verification results show that the MSE of the Gm is less than 1.07 × 10−4, which proves the effectiveness of the equation.
期刊介绍:
International Journal of RF and Microwave Computer-Aided Engineering provides a common forum for the dissemination of research and development results in the areas of computer-aided design and engineering of RF, microwave, and millimeter-wave components, circuits, subsystems, and antennas. The journal is intended to be a single source of valuable information for all engineers and technicians, RF/microwave/mm-wave CAD tool vendors, researchers in industry, government and academia, professors and students, and systems engineers involved in RF/microwave/mm-wave technology.
Multidisciplinary in scope, the journal publishes peer-reviewed articles and short papers on topics that include, but are not limited to. . .
-Computer-Aided Modeling
-Computer-Aided Analysis
-Computer-Aided Optimization
-Software and Manufacturing Techniques
-Computer-Aided Measurements
-Measurements Interfaced with CAD Systems
In addition, the scope of the journal includes features such as software reviews, RF/microwave/mm-wave CAD related news, including brief reviews of CAD papers published elsewhere and a "Letters to the Editor" section.