{"title":"基于多轴测试的金属韧性断裂评估直接分析方法","authors":"Gabriele Cortis, Marcello Piacenti, Filippo Nalli, Luca Cortese","doi":"10.1111/ffe.14378","DOIUrl":null,"url":null,"abstract":"<p>The prediction accuracy of ductile damage models is subject to a sound calibration strategy, which normally involves the execution of complex multiaxial tests and requires dedicated facilities. In addition, finite element (FE) analysis is mandatory to retrieve the stress and strain states at the critical point, which cannot be directly measured from experiments. To overcome this complexity, a minimal set of simple multiaxial tests is selected, and an analytical-numerical approach is proposed to evaluate, without resorting to FE, both the stress evolution with plastic deformation and the fracture strain, under any different loading condition of each test. This is achieved from the sole knowledge of the material bilinear stress–strain relation and of the applied test displacement at fracture. The obtained results are compared with a traditional testing and calibration methodology, and the robustness of the approach is proved on a 17-4PH steel, an X65 steel, and a Ti6Al4V alloy.</p>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"47 9","pages":"3408-3424"},"PeriodicalIF":3.1000,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A direct analytical methodology for the assessment of ductile fracture in metals based on multiaxial tests\",\"authors\":\"Gabriele Cortis, Marcello Piacenti, Filippo Nalli, Luca Cortese\",\"doi\":\"10.1111/ffe.14378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The prediction accuracy of ductile damage models is subject to a sound calibration strategy, which normally involves the execution of complex multiaxial tests and requires dedicated facilities. In addition, finite element (FE) analysis is mandatory to retrieve the stress and strain states at the critical point, which cannot be directly measured from experiments. To overcome this complexity, a minimal set of simple multiaxial tests is selected, and an analytical-numerical approach is proposed to evaluate, without resorting to FE, both the stress evolution with plastic deformation and the fracture strain, under any different loading condition of each test. This is achieved from the sole knowledge of the material bilinear stress–strain relation and of the applied test displacement at fracture. The obtained results are compared with a traditional testing and calibration methodology, and the robustness of the approach is proved on a 17-4PH steel, an X65 steel, and a Ti6Al4V alloy.</p>\",\"PeriodicalId\":12298,\"journal\":{\"name\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"volume\":\"47 9\",\"pages\":\"3408-3424\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14378\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14378","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
A direct analytical methodology for the assessment of ductile fracture in metals based on multiaxial tests
The prediction accuracy of ductile damage models is subject to a sound calibration strategy, which normally involves the execution of complex multiaxial tests and requires dedicated facilities. In addition, finite element (FE) analysis is mandatory to retrieve the stress and strain states at the critical point, which cannot be directly measured from experiments. To overcome this complexity, a minimal set of simple multiaxial tests is selected, and an analytical-numerical approach is proposed to evaluate, without resorting to FE, both the stress evolution with plastic deformation and the fracture strain, under any different loading condition of each test. This is achieved from the sole knowledge of the material bilinear stress–strain relation and of the applied test displacement at fracture. The obtained results are compared with a traditional testing and calibration methodology, and the robustness of the approach is proved on a 17-4PH steel, an X65 steel, and a Ti6Al4V alloy.
期刊介绍:
Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.