{"title":"论洛伦兹长度空间中的曲率边界","authors":"Tobias Beran, Michael Kunzinger, Felix Rott","doi":"10.1112/jlms.12971","DOIUrl":null,"url":null,"abstract":"<p>We introduce several new notions of (sectional) curvature bounds for Lorentzian pre-length spaces: On the one hand, we provide convexity/concavity conditions for the (modified) time separation function, and, on the other hand, we study four-point conditions, which are suitable also for the non-intrinsic setting. Via these concepts, we are able to establish (under mild assumptions) the equivalence of all previously known formulations of curvature bounds. In particular, we obtain the equivalence of causal and timelike curvature bounds as introduced by Kunzinger and Sämann.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12971","citationCount":"0","resultStr":"{\"title\":\"On curvature bounds in Lorentzian length spaces\",\"authors\":\"Tobias Beran, Michael Kunzinger, Felix Rott\",\"doi\":\"10.1112/jlms.12971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce several new notions of (sectional) curvature bounds for Lorentzian pre-length spaces: On the one hand, we provide convexity/concavity conditions for the (modified) time separation function, and, on the other hand, we study four-point conditions, which are suitable also for the non-intrinsic setting. Via these concepts, we are able to establish (under mild assumptions) the equivalence of all previously known formulations of curvature bounds. In particular, we obtain the equivalence of causal and timelike curvature bounds as introduced by Kunzinger and Sämann.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12971\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12971\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12971","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
We introduce several new notions of (sectional) curvature bounds for Lorentzian pre-length spaces: On the one hand, we provide convexity/concavity conditions for the (modified) time separation function, and, on the other hand, we study four-point conditions, which are suitable also for the non-intrinsic setting. Via these concepts, we are able to establish (under mild assumptions) the equivalence of all previously known formulations of curvature bounds. In particular, we obtain the equivalence of causal and timelike curvature bounds as introduced by Kunzinger and Sämann.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.