论洛伦兹长度空间中的曲率边界

IF 1 2区 数学 Q1 MATHEMATICS
Tobias Beran, Michael Kunzinger, Felix Rott
{"title":"论洛伦兹长度空间中的曲率边界","authors":"Tobias Beran,&nbsp;Michael Kunzinger,&nbsp;Felix Rott","doi":"10.1112/jlms.12971","DOIUrl":null,"url":null,"abstract":"<p>We introduce several new notions of (sectional) curvature bounds for Lorentzian pre-length spaces: On the one hand, we provide convexity/concavity conditions for the (modified) time separation function, and, on the other hand, we study four-point conditions, which are suitable also for the non-intrinsic setting. Via these concepts, we are able to establish (under mild assumptions) the equivalence of all previously known formulations of curvature bounds. In particular, we obtain the equivalence of causal and timelike curvature bounds as introduced by Kunzinger and Sämann.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"110 2","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12971","citationCount":"0","resultStr":"{\"title\":\"On curvature bounds in Lorentzian length spaces\",\"authors\":\"Tobias Beran,&nbsp;Michael Kunzinger,&nbsp;Felix Rott\",\"doi\":\"10.1112/jlms.12971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce several new notions of (sectional) curvature bounds for Lorentzian pre-length spaces: On the one hand, we provide convexity/concavity conditions for the (modified) time separation function, and, on the other hand, we study four-point conditions, which are suitable also for the non-intrinsic setting. Via these concepts, we are able to establish (under mild assumptions) the equivalence of all previously known formulations of curvature bounds. In particular, we obtain the equivalence of causal and timelike curvature bounds as introduced by Kunzinger and Sämann.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"110 2\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12971\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12971\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12971","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们为洛伦兹前长空间引入了几个新的(截面)曲率边界概念:一方面,我们为(修正的)时间分离函数提供了凸性/凹性条件;另一方面,我们研究了四点条件,这些条件也适用于非本征结构。通过这些概念,我们能够(在温和的假设条件下)建立之前已知的所有曲率边界公式的等价性。特别是,我们得到了 Kunzinger 和 Sämann 提出的因果曲率边界和时间曲率边界的等价性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On curvature bounds in Lorentzian length spaces

On curvature bounds in Lorentzian length spaces

We introduce several new notions of (sectional) curvature bounds for Lorentzian pre-length spaces: On the one hand, we provide convexity/concavity conditions for the (modified) time separation function, and, on the other hand, we study four-point conditions, which are suitable also for the non-intrinsic setting. Via these concepts, we are able to establish (under mild assumptions) the equivalence of all previously known formulations of curvature bounds. In particular, we obtain the equivalence of causal and timelike curvature bounds as introduced by Kunzinger and Sämann.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信