PbHfO3 单晶中场诱导跃迁的原位 X 射线衍射证据

IF 5.2 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nickolay Arkhipov, Alexander Ganzha, Maria Kniazeva, Alexander Vakulenko, Alexey Filimonov, Roman Burkovsky
{"title":"PbHfO3 单晶中场诱导跃迁的原位 X 射线衍射证据","authors":"Nickolay Arkhipov,&nbsp;Alexander Ganzha,&nbsp;Maria Kniazeva,&nbsp;Alexander Vakulenko,&nbsp;Alexey Filimonov,&nbsp;Roman Burkovsky","doi":"10.1107/S1600576724006393","DOIUrl":null,"url":null,"abstract":"<p>Antiferroelectric (AFE) materials are interesting due to recent discoveries of new prospective applications, although the mechanisms of the phase transitions that are at the heart of these applications remain incompletely understood. This work is devoted to the study of a single crystal of a model AFE, lead hafnate, by X-ray diffraction with <i>in situ</i> application of an electric field to trigger the transition to a polar phase. Two consecutive experiments were carried out on a 35 µm thick plate with [110] surface normal orientation over a field range from 0 to 330 kV cm<sup>−1</sup> and back. A sharp drop in the intensity of <i>R</i>- and Σ-type reflections around 225 kV cm<sup>−1</sup> was registered, with almost complete disappearance after 250 kV cm<sup>−1</sup>. This is compatible with a field-induced phase transition from the AFE to the <i>R</i>3<i>m</i> polar phase, which was suggested earlier on the basis of non-diffraction characterizations. X-ray diffraction reveals that the AFE domains with displacements parallel to the field direction react much more smoothly to the field, gradually reducing the AFE order at very small fields instead of holding it almost constant up to the critical field value, which is naturally expected. This expectation is fulfilled for domains with other orientations, but only for the first switching cycle; in the second switching cycle the AFE order already shows a notable decrease at subcritical fields. It is suggested that these observations could be linked with the antiphase domain wall population being affected by the field, which is consistent with the observation of diffuse rods between the Γ and Σ points. Another remarkable observation is the much smoother recovery of the AFE phase compared with its sharp disappearance at the critical field.</p>","PeriodicalId":48737,"journal":{"name":"Journal of Applied Crystallography","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In situ X-ray diffraction evidence of field-induced transitions in a PbHfO3 single crystal\",\"authors\":\"Nickolay Arkhipov,&nbsp;Alexander Ganzha,&nbsp;Maria Kniazeva,&nbsp;Alexander Vakulenko,&nbsp;Alexey Filimonov,&nbsp;Roman Burkovsky\",\"doi\":\"10.1107/S1600576724006393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Antiferroelectric (AFE) materials are interesting due to recent discoveries of new prospective applications, although the mechanisms of the phase transitions that are at the heart of these applications remain incompletely understood. This work is devoted to the study of a single crystal of a model AFE, lead hafnate, by X-ray diffraction with <i>in situ</i> application of an electric field to trigger the transition to a polar phase. Two consecutive experiments were carried out on a 35 µm thick plate with [110] surface normal orientation over a field range from 0 to 330 kV cm<sup>−1</sup> and back. A sharp drop in the intensity of <i>R</i>- and Σ-type reflections around 225 kV cm<sup>−1</sup> was registered, with almost complete disappearance after 250 kV cm<sup>−1</sup>. This is compatible with a field-induced phase transition from the AFE to the <i>R</i>3<i>m</i> polar phase, which was suggested earlier on the basis of non-diffraction characterizations. X-ray diffraction reveals that the AFE domains with displacements parallel to the field direction react much more smoothly to the field, gradually reducing the AFE order at very small fields instead of holding it almost constant up to the critical field value, which is naturally expected. This expectation is fulfilled for domains with other orientations, but only for the first switching cycle; in the second switching cycle the AFE order already shows a notable decrease at subcritical fields. It is suggested that these observations could be linked with the antiphase domain wall population being affected by the field, which is consistent with the observation of diffuse rods between the Γ and Σ points. Another remarkable observation is the much smoother recovery of the AFE phase compared with its sharp disappearance at the critical field.</p>\",\"PeriodicalId\":48737,\"journal\":{\"name\":\"Journal of Applied Crystallography\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Crystallography\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1107/S1600576724006393\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Crystallography","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1107/S1600576724006393","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

反铁电(AFE)材料因最近发现的新的应用前景而备受关注,尽管人们对这些应用的核心相变机制仍不甚了解。这项工作致力于通过 X 射线衍射法研究模型 AFE--铪酸铅的单晶体,并在原位施加电场以触发向极性相的转变。在 0 至 330 kV cm-1 的电场范围内,在表面法线方向为 [110] 的 35 µm 厚板上连续进行了两次实验。在 225 kV cm-1 左右,R 型和 Σ 型反射强度急剧下降,250 kV cm-1 后几乎完全消失。这与早先根据非衍射特征提出的从 AFE 到 R3m 极性相的场诱导相变相吻合。X 射线衍射显示,位移与磁场方向平行的 AFE 域对磁场的反应要平滑得多,在极小的磁场中,AFE 阶逐渐降低,而不是在临界磁场值之前几乎保持不变,这自然是意料之中的。这一预期在其他方向的畴中也得到了实现,但仅限于第一个切换周期;在第二个切换周期中,AFE阶在亚临界磁场下已经出现了明显的下降。有人认为,这些观察结果可能与反相畴壁群受到场的影响有关,这与在Γ点和Σ点之间观察到的扩散棒是一致的。另一个值得注意的现象是,与临界场的急剧消失相比,AFE 相的恢复要平缓得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In situ X-ray diffraction evidence of field-induced transitions in a PbHfO3 single crystal

Antiferroelectric (AFE) materials are interesting due to recent discoveries of new prospective applications, although the mechanisms of the phase transitions that are at the heart of these applications remain incompletely understood. This work is devoted to the study of a single crystal of a model AFE, lead hafnate, by X-ray diffraction with in situ application of an electric field to trigger the transition to a polar phase. Two consecutive experiments were carried out on a 35 µm thick plate with [110] surface normal orientation over a field range from 0 to 330 kV cm−1 and back. A sharp drop in the intensity of R- and Σ-type reflections around 225 kV cm−1 was registered, with almost complete disappearance after 250 kV cm−1. This is compatible with a field-induced phase transition from the AFE to the R3m polar phase, which was suggested earlier on the basis of non-diffraction characterizations. X-ray diffraction reveals that the AFE domains with displacements parallel to the field direction react much more smoothly to the field, gradually reducing the AFE order at very small fields instead of holding it almost constant up to the critical field value, which is naturally expected. This expectation is fulfilled for domains with other orientations, but only for the first switching cycle; in the second switching cycle the AFE order already shows a notable decrease at subcritical fields. It is suggested that these observations could be linked with the antiphase domain wall population being affected by the field, which is consistent with the observation of diffuse rods between the Γ and Σ points. Another remarkable observation is the much smoother recovery of the AFE phase compared with its sharp disappearance at the critical field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Crystallography
Journal of Applied Crystallography CHEMISTRY, MULTIDISCIPLINARYCRYSTALLOGRAPH-CRYSTALLOGRAPHY
CiteScore
7.80
自引率
3.30%
发文量
178
期刊介绍: Many research topics in condensed matter research, materials science and the life sciences make use of crystallographic methods to study crystalline and non-crystalline matter with neutrons, X-rays and electrons. Articles published in the Journal of Applied Crystallography focus on these methods and their use in identifying structural and diffusion-controlled phase transformations, structure-property relationships, structural changes of defects, interfaces and surfaces, etc. Developments of instrumentation and crystallographic apparatus, theory and interpretation, numerical analysis and other related subjects are also covered. The journal is the primary place where crystallographic computer program information is published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信