黎曼zeta函数导数的负离散矩

IF 0.8 3区 数学 Q2 MATHEMATICS
Hung M. Bui, Alexandra Florea, Micah B. Milinovich
{"title":"黎曼zeta函数导数的负离散矩","authors":"Hung M. Bui,&nbsp;Alexandra Florea,&nbsp;Micah B. Milinovich","doi":"10.1112/blms.13092","DOIUrl":null,"url":null,"abstract":"<p>We obtain conditional upper bounds for negative discrete moments of the derivative of the Riemann zeta-function averaged over a subfamily of zeros of the zeta function that is expected to be arbitrarily close to full density inside the set of all zeros. For <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>⩽</mo>\n <mn>1</mn>\n <mo>/</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$k\\leqslant 1/2$</annotation>\n </semantics></math>, our bounds for the <span></span><math>\n <semantics>\n <mrow>\n <mn>2</mn>\n <mi>k</mi>\n </mrow>\n <annotation>$2k$</annotation>\n </semantics></math>-th moments are expected to be almost optimal. Assuming a conjecture about the maximum size of the argument of the zeta function on the critical line, we obtain upper bounds for these negative moments of the same strength while summing over a larger subfamily of zeta zeros.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 8","pages":"2680-2703"},"PeriodicalIF":0.8000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13092","citationCount":"0","resultStr":"{\"title\":\"Negative discrete moments of the derivative of the Riemann zeta-function\",\"authors\":\"Hung M. Bui,&nbsp;Alexandra Florea,&nbsp;Micah B. Milinovich\",\"doi\":\"10.1112/blms.13092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We obtain conditional upper bounds for negative discrete moments of the derivative of the Riemann zeta-function averaged over a subfamily of zeros of the zeta function that is expected to be arbitrarily close to full density inside the set of all zeros. For <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>⩽</mo>\\n <mn>1</mn>\\n <mo>/</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$k\\\\leqslant 1/2$</annotation>\\n </semantics></math>, our bounds for the <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>2</mn>\\n <mi>k</mi>\\n </mrow>\\n <annotation>$2k$</annotation>\\n </semantics></math>-th moments are expected to be almost optimal. Assuming a conjecture about the maximum size of the argument of the zeta function on the critical line, we obtain upper bounds for these negative moments of the same strength while summing over a larger subfamily of zeta zeros.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 8\",\"pages\":\"2680-2703\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13092\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13092\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13092","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们得到了黎曼zeta函数导数的负离散矩的条件上界,该矩平均于zeta函数的一个零点子族,预计该子族在所有零点集合内任意接近全密度。对于 k ⩽ 1 / 2 $k\leqslant/1/2$,我们对 2 k $2k$ -th 矩的约束几乎是最优的。假定临界线上zeta 函数参数的最大尺寸是一个猜想,我们就可以得到这些负矩阵的上界,其强度相同,同时对更大的zeta zeros 子族求和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Negative discrete moments of the derivative of the Riemann zeta-function

We obtain conditional upper bounds for negative discrete moments of the derivative of the Riemann zeta-function averaged over a subfamily of zeros of the zeta function that is expected to be arbitrarily close to full density inside the set of all zeros. For k 1 / 2 $k\leqslant 1/2$ , our bounds for the 2 k $2k$ -th moments are expected to be almost optimal. Assuming a conjecture about the maximum size of the argument of the zeta function on the critical line, we obtain upper bounds for these negative moments of the same strength while summing over a larger subfamily of zeta zeros.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信