Lesleis Nagy, Roberto Moreno, Adrian R. Muxworthy, Wyn Williams, Greig A. Paterson, Lisa Tauxe, Miguel A. Valdez-Grijalva
{"title":"微磁测定古地磁重要磁铁矿集合体的 FORC 响应","authors":"Lesleis Nagy, Roberto Moreno, Adrian R. Muxworthy, Wyn Williams, Greig A. Paterson, Lisa Tauxe, Miguel A. Valdez-Grijalva","doi":"10.1029/2024GC011465","DOIUrl":null,"url":null,"abstract":"<p>Micromagnetic modeling allows the systematic study of the effects of particle size and shape on the first-order reversal curve (FORC) magnetic hysteresis response for magnetite particles in the single-domain (SD) and pseudo-single domain (PSD) particle size range. The interpretation of FORCs, though widely used, has been highly subjective. Here, we use micromagnetics to model randomly oriented distributions of particles to allow more physically meaningful interpretations. We show that one commonly found type of PSD particle—namely the single vortex (SV) particle—has far more complex signals than SD particles, with multiple peaks and troughs in the FORC distribution, where the peaks have higher switching fields for larger SV particles. Particles in the SD to SV transition zone have the lowest switching fields. Symmetrical and prolate particles display similar behavior, with distinctive peaks forming near the vertical axis of the FORC diagram. In contrast, highly oblate particles produce “butterfly” structures, suggesting that these are potentially diagnostic of particle morphology. We also consider FORC diagrams for distributions of particle sizes and shapes and produce an online application that users can use to build their own FORC distributions. There is good agreement between the model predictions for distributions of particle sizes and shapes, and the published experimental literature.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"25 7","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011465","citationCount":"0","resultStr":"{\"title\":\"Micromagnetic Determination of the FORC Response of Paleomagnetically Significant Magnetite Assemblages\",\"authors\":\"Lesleis Nagy, Roberto Moreno, Adrian R. Muxworthy, Wyn Williams, Greig A. Paterson, Lisa Tauxe, Miguel A. Valdez-Grijalva\",\"doi\":\"10.1029/2024GC011465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Micromagnetic modeling allows the systematic study of the effects of particle size and shape on the first-order reversal curve (FORC) magnetic hysteresis response for magnetite particles in the single-domain (SD) and pseudo-single domain (PSD) particle size range. The interpretation of FORCs, though widely used, has been highly subjective. Here, we use micromagnetics to model randomly oriented distributions of particles to allow more physically meaningful interpretations. We show that one commonly found type of PSD particle—namely the single vortex (SV) particle—has far more complex signals than SD particles, with multiple peaks and troughs in the FORC distribution, where the peaks have higher switching fields for larger SV particles. Particles in the SD to SV transition zone have the lowest switching fields. Symmetrical and prolate particles display similar behavior, with distinctive peaks forming near the vertical axis of the FORC diagram. In contrast, highly oblate particles produce “butterfly” structures, suggesting that these are potentially diagnostic of particle morphology. We also consider FORC diagrams for distributions of particle sizes and shapes and produce an online application that users can use to build their own FORC distributions. There is good agreement between the model predictions for distributions of particle sizes and shapes, and the published experimental literature.</p>\",\"PeriodicalId\":50422,\"journal\":{\"name\":\"Geochemistry Geophysics Geosystems\",\"volume\":\"25 7\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011465\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochemistry Geophysics Geosystems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024GC011465\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry Geophysics Geosystems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GC011465","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Micromagnetic Determination of the FORC Response of Paleomagnetically Significant Magnetite Assemblages
Micromagnetic modeling allows the systematic study of the effects of particle size and shape on the first-order reversal curve (FORC) magnetic hysteresis response for magnetite particles in the single-domain (SD) and pseudo-single domain (PSD) particle size range. The interpretation of FORCs, though widely used, has been highly subjective. Here, we use micromagnetics to model randomly oriented distributions of particles to allow more physically meaningful interpretations. We show that one commonly found type of PSD particle—namely the single vortex (SV) particle—has far more complex signals than SD particles, with multiple peaks and troughs in the FORC distribution, where the peaks have higher switching fields for larger SV particles. Particles in the SD to SV transition zone have the lowest switching fields. Symmetrical and prolate particles display similar behavior, with distinctive peaks forming near the vertical axis of the FORC diagram. In contrast, highly oblate particles produce “butterfly” structures, suggesting that these are potentially diagnostic of particle morphology. We also consider FORC diagrams for distributions of particle sizes and shapes and produce an online application that users can use to build their own FORC distributions. There is good agreement between the model predictions for distributions of particle sizes and shapes, and the published experimental literature.
期刊介绍:
Geochemistry, Geophysics, Geosystems (G3) publishes research papers on Earth and planetary processes with a focus on understanding the Earth as a system. Observational, experimental, and theoretical investigations of the solid Earth, hydrosphere, atmosphere, biosphere, and solar system at all spatial and temporal scales are welcome. Articles should be of broad interest, and interdisciplinary approaches are encouraged.
Areas of interest for this peer-reviewed journal include, but are not limited to:
The physics and chemistry of the Earth, including its structure, composition, physical properties, dynamics, and evolution
Principles and applications of geochemical proxies to studies of Earth history
The physical properties, composition, and temporal evolution of the Earth''s major reservoirs and the coupling between them
The dynamics of geochemical and biogeochemical cycles at all spatial and temporal scales
Physical and cosmochemical constraints on the composition, origin, and evolution of the Earth and other terrestrial planets
The chemistry and physics of solar system materials that are relevant to the formation, evolution, and current state of the Earth and the planets
Advances in modeling, observation, and experimentation that are of widespread interest in the geosciences.