{"title":"高温下 Ti60 合金在极高循环疲劳状态下的断裂机理及疲劳寿命预测","authors":"Qikai Zhou, Zhiyong Huang, Hongjiang Qian, Jian Wang, Zeshuai Shen, Kai Pan, Yonghui Chen","doi":"10.1111/ffe.14359","DOIUrl":null,"url":null,"abstract":"<p>This study aimed to investigate the failure mechanism of Ti60 titanium alloy in the high cycle fatigue (HCF) and very high cycle fatigue (VHCF) at 500°C. Ti60 specimens were characterized before and after the 500°C VHCF test, and the fracture surfaces were observed. The results show that there are three different fatigue failure mechanisms at 500°C: (i) equiaxed primary α phase (α<sub>p</sub>) cleavage, forming small unsmooth facets and rough fracture area (RA), and fusion of non-adjacent facets to grow into the main crack. (ii) α<sub>p</sub> grains gather into large grain with triple junction, and large grain slip to form large fusion facet. (iii) Oxide shedding and then cracks form. A dynamic recurrent neural network model is used to predict the fatigue life of Ti60 alloy, 91% of the overall predictions were within the scatter band of 3.0, and 100% were within the scatter band of 5.0.</p>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"47 9","pages":"3285-3299"},"PeriodicalIF":3.1000,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fracture mechanism of Ti60 alloy at high temperature in very high cycle fatigue regime and fatigue life prediction\",\"authors\":\"Qikai Zhou, Zhiyong Huang, Hongjiang Qian, Jian Wang, Zeshuai Shen, Kai Pan, Yonghui Chen\",\"doi\":\"10.1111/ffe.14359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study aimed to investigate the failure mechanism of Ti60 titanium alloy in the high cycle fatigue (HCF) and very high cycle fatigue (VHCF) at 500°C. Ti60 specimens were characterized before and after the 500°C VHCF test, and the fracture surfaces were observed. The results show that there are three different fatigue failure mechanisms at 500°C: (i) equiaxed primary α phase (α<sub>p</sub>) cleavage, forming small unsmooth facets and rough fracture area (RA), and fusion of non-adjacent facets to grow into the main crack. (ii) α<sub>p</sub> grains gather into large grain with triple junction, and large grain slip to form large fusion facet. (iii) Oxide shedding and then cracks form. A dynamic recurrent neural network model is used to predict the fatigue life of Ti60 alloy, 91% of the overall predictions were within the scatter band of 3.0, and 100% were within the scatter band of 5.0.</p>\",\"PeriodicalId\":12298,\"journal\":{\"name\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"volume\":\"47 9\",\"pages\":\"3285-3299\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14359\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14359","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Fracture mechanism of Ti60 alloy at high temperature in very high cycle fatigue regime and fatigue life prediction
This study aimed to investigate the failure mechanism of Ti60 titanium alloy in the high cycle fatigue (HCF) and very high cycle fatigue (VHCF) at 500°C. Ti60 specimens were characterized before and after the 500°C VHCF test, and the fracture surfaces were observed. The results show that there are three different fatigue failure mechanisms at 500°C: (i) equiaxed primary α phase (αp) cleavage, forming small unsmooth facets and rough fracture area (RA), and fusion of non-adjacent facets to grow into the main crack. (ii) αp grains gather into large grain with triple junction, and large grain slip to form large fusion facet. (iii) Oxide shedding and then cracks form. A dynamic recurrent neural network model is used to predict the fatigue life of Ti60 alloy, 91% of the overall predictions were within the scatter band of 3.0, and 100% were within the scatter band of 5.0.
期刊介绍:
Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.