具有弱消除想象的寡形群的同构问题

IF 0.8 3区 数学 Q2 MATHEMATICS
Gianluca Paolini
{"title":"具有弱消除想象的寡形群的同构问题","authors":"Gianluca Paolini","doi":"10.1112/blms.13086","DOIUrl":null,"url":null,"abstract":"<p>In Kechris et al. [J. Symb. Log. <b>83</b> (2018), no. 3, 1190–1203], it was asked if equality on the reals is sharp as a lower bound for the complexity of topological isomorphism between oligomorphic groups. We prove that under the assumption of weak elimination of imaginaries, this is indeed the case. Our methods are model theoretic and they also have applications on the classical problem of reconstruction of isomorphisms of permutation groups from (topological) isomorphisms of automorphisms groups. As a concrete application, we give an explicit description of <span></span><math>\n <semantics>\n <mrow>\n <mi>Aut</mi>\n <mo>(</mo>\n <mi>GL</mi>\n <mo>(</mo>\n <mi>V</mi>\n <mo>)</mo>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathrm{Aut}(\\mathrm{GL}(V))$</annotation>\n </semantics></math> for any vector space <span></span><math>\n <semantics>\n <mi>V</mi>\n <annotation>$V$</annotation>\n </semantics></math> of dimension <span></span><math>\n <semantics>\n <msub>\n <mi>ℵ</mi>\n <mn>0</mn>\n </msub>\n <annotation>$\\aleph _0$</annotation>\n </semantics></math> over a finite field, in affinity with the classical description for finite-dimensional spaces due to Schreier and van der Waerden.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 8","pages":"2597-2614"},"PeriodicalIF":0.8000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The isomorphism problem for oligomorphic groups with weak elimination of imaginaries\",\"authors\":\"Gianluca Paolini\",\"doi\":\"10.1112/blms.13086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In Kechris et al. [J. Symb. Log. <b>83</b> (2018), no. 3, 1190–1203], it was asked if equality on the reals is sharp as a lower bound for the complexity of topological isomorphism between oligomorphic groups. We prove that under the assumption of weak elimination of imaginaries, this is indeed the case. Our methods are model theoretic and they also have applications on the classical problem of reconstruction of isomorphisms of permutation groups from (topological) isomorphisms of automorphisms groups. As a concrete application, we give an explicit description of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Aut</mi>\\n <mo>(</mo>\\n <mi>GL</mi>\\n <mo>(</mo>\\n <mi>V</mi>\\n <mo>)</mo>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\mathrm{Aut}(\\\\mathrm{GL}(V))$</annotation>\\n </semantics></math> for any vector space <span></span><math>\\n <semantics>\\n <mi>V</mi>\\n <annotation>$V$</annotation>\\n </semantics></math> of dimension <span></span><math>\\n <semantics>\\n <msub>\\n <mi>ℵ</mi>\\n <mn>0</mn>\\n </msub>\\n <annotation>$\\\\aleph _0$</annotation>\\n </semantics></math> over a finite field, in affinity with the classical description for finite-dimensional spaces due to Schreier and van der Waerden.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 8\",\"pages\":\"2597-2614\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13086\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13086","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在 Kechris 等人[J. Symb. Log. 83 (2018),no. 3,1190-1203]的文章中,有人问,作为寡同构群之间拓扑同构复杂性的下限,有理数上的相等是否尖锐。我们证明,在弱消除想象的假设下,情况确实如此。我们的方法是模型论的,也可应用于从自形群(拓扑)同构重构置换群同构的经典问题。作为一个具体应用,我们给出了对有限域上维度为 ℵ 0 $\aleph _0$ 的任意向量空间 V $V$ 的 Aut ( GL ( V ) ) $\mathrm{Aut}(\mathrm{GL}(V))$ 的明确描述,这与施赖尔和范德瓦尔登对有限维空间的经典描述是相近的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The isomorphism problem for oligomorphic groups with weak elimination of imaginaries

In Kechris et al. [J. Symb. Log. 83 (2018), no. 3, 1190–1203], it was asked if equality on the reals is sharp as a lower bound for the complexity of topological isomorphism between oligomorphic groups. We prove that under the assumption of weak elimination of imaginaries, this is indeed the case. Our methods are model theoretic and they also have applications on the classical problem of reconstruction of isomorphisms of permutation groups from (topological) isomorphisms of automorphisms groups. As a concrete application, we give an explicit description of Aut ( GL ( V ) ) $\mathrm{Aut}(\mathrm{GL}(V))$ for any vector space V $V$ of dimension 0 $\aleph _0$ over a finite field, in affinity with the classical description for finite-dimensional spaces due to Schreier and van der Waerden.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信