利用平面和亚波长穿孔超薄金属膜实现中红外完美吸收

Zarko Sakotic, Amogh Raju, Alexander Ware, Félix A. Estévez H., Madeline Brown, Yonathan Magendzo Behar, Divya Hungund, Daniel Wasserman
{"title":"利用平面和亚波长穿孔超薄金属膜实现中红外完美吸收","authors":"Zarko Sakotic,&nbsp;Amogh Raju,&nbsp;Alexander Ware,&nbsp;Félix A. Estévez H.,&nbsp;Madeline Brown,&nbsp;Yonathan Magendzo Behar,&nbsp;Divya Hungund,&nbsp;Daniel Wasserman","doi":"10.1002/apxr.202400012","DOIUrl":null,"url":null,"abstract":"<p>A straightforward analytical approach is proposed for the design of minimally thin metal absorbers. Unlike traditional resonant design principles, where shape, size, and periodicity of a nanostructured film determine the absorption properties, this study uses only the thickness and permittivity (i.e., sheet conductivity) of the material at hand to demonstrate maximal absorption in the minimal possible thickness at any given wavelength in planar layers – guided by only the derived material-agnostic equations. An alternative mechanism is further proposed and experimentally demonstrated to obtain precise control over the sheet conductivity of metal films necessary for such designs using metal dilution, enabling the tuning of both the amplitude and the phase of reflected waves. Finally, the concept of “phase doping” is proposed and experimentally demonstrated, wherein an ultrathin metal layer is placed within the spacer of the absorber cavity, which spectrally tunes the absorption feature without changing the spacer thickness or participating in the absorption. By judiciously combining the dilution of the absorbing and phase layers, a multifunctional ultrathin absorber architecture is demonstrated with customizable amplitude, spectral position, and selectivity, all leveraging the same vertical stack. These findings are promising for the design of ultrasensitive detectors, thermal emitters, and nonlinear optical components.</p>","PeriodicalId":100035,"journal":{"name":"Advanced Physics Research","volume":"3 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202400012","citationCount":"0","resultStr":"{\"title\":\"Mid-Infrared Perfect Absorption with Planar and Subwavelength-Perforated Ultrathin Metal Films\",\"authors\":\"Zarko Sakotic,&nbsp;Amogh Raju,&nbsp;Alexander Ware,&nbsp;Félix A. Estévez H.,&nbsp;Madeline Brown,&nbsp;Yonathan Magendzo Behar,&nbsp;Divya Hungund,&nbsp;Daniel Wasserman\",\"doi\":\"10.1002/apxr.202400012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A straightforward analytical approach is proposed for the design of minimally thin metal absorbers. Unlike traditional resonant design principles, where shape, size, and periodicity of a nanostructured film determine the absorption properties, this study uses only the thickness and permittivity (i.e., sheet conductivity) of the material at hand to demonstrate maximal absorption in the minimal possible thickness at any given wavelength in planar layers – guided by only the derived material-agnostic equations. An alternative mechanism is further proposed and experimentally demonstrated to obtain precise control over the sheet conductivity of metal films necessary for such designs using metal dilution, enabling the tuning of both the amplitude and the phase of reflected waves. Finally, the concept of “phase doping” is proposed and experimentally demonstrated, wherein an ultrathin metal layer is placed within the spacer of the absorber cavity, which spectrally tunes the absorption feature without changing the spacer thickness or participating in the absorption. By judiciously combining the dilution of the absorbing and phase layers, a multifunctional ultrathin absorber architecture is demonstrated with customizable amplitude, spectral position, and selectivity, all leveraging the same vertical stack. These findings are promising for the design of ultrasensitive detectors, thermal emitters, and nonlinear optical components.</p>\",\"PeriodicalId\":100035,\"journal\":{\"name\":\"Advanced Physics Research\",\"volume\":\"3 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202400012\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Physics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/apxr.202400012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Physics Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/apxr.202400012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种设计极薄金属吸收器的直接分析方法。与纳米结构薄膜的形状、尺寸和周期性决定吸收特性的传统共振设计原理不同,本研究仅使用手头材料的厚度和介电常数(即薄片电导率)来证明在任何给定波长的平面层中,在可能的最小厚度内的最大吸收--仅由推导出的材料无关方程提供指导。我们还进一步提出了另一种机制,并通过实验证明了如何利用金属稀释来精确控制此类设计所需的金属薄膜的薄层电导率,从而实现对反射波的振幅和相位进行调整。最后,提出并通过实验证明了 "相位掺杂 "的概念,即在吸收腔的间隔层中放置超薄金属层,从而在不改变间隔层厚度或不参与吸收的情况下对吸收特征进行光谱调谐。通过明智地结合吸收层和相层的稀释,展示了一种多功能超薄吸收器结构,其振幅、光谱位置和选择性均可定制,且全部利用相同的垂直叠层。这些发现对设计超灵敏探测器、热发射器和非线性光学元件大有裨益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mid-Infrared Perfect Absorption with Planar and Subwavelength-Perforated Ultrathin Metal Films

Mid-Infrared Perfect Absorption with Planar and Subwavelength-Perforated Ultrathin Metal Films

A straightforward analytical approach is proposed for the design of minimally thin metal absorbers. Unlike traditional resonant design principles, where shape, size, and periodicity of a nanostructured film determine the absorption properties, this study uses only the thickness and permittivity (i.e., sheet conductivity) of the material at hand to demonstrate maximal absorption in the minimal possible thickness at any given wavelength in planar layers – guided by only the derived material-agnostic equations. An alternative mechanism is further proposed and experimentally demonstrated to obtain precise control over the sheet conductivity of metal films necessary for such designs using metal dilution, enabling the tuning of both the amplitude and the phase of reflected waves. Finally, the concept of “phase doping” is proposed and experimentally demonstrated, wherein an ultrathin metal layer is placed within the spacer of the absorber cavity, which spectrally tunes the absorption feature without changing the spacer thickness or participating in the absorption. By judiciously combining the dilution of the absorbing and phase layers, a multifunctional ultrathin absorber architecture is demonstrated with customizable amplitude, spectral position, and selectivity, all leveraging the same vertical stack. These findings are promising for the design of ultrasensitive detectors, thermal emitters, and nonlinear optical components.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信