{"title":"考虑电场互漏电抗的大容量同步电容器时变等效电路参数计算方法","authors":"Xiao Han, Yanping Liang, Xu Bian, Weihao Wang","doi":"10.1049/elp2.12435","DOIUrl":null,"url":null,"abstract":"<p>Accurate calculation of equivalent circuit parameters is a prerequisite for accurately calculating the large-capacity synchronous condenser parameter model. Due to its special transient operating conditions, the high transient magnetic saturation effect during operation causes the non-linearity and time-varying of the equivalent circuit parameters. The field mutual leakage reactance is the critical factor affecting the field current, and the time-varying of the equivalent circuit parameters is closely related to the field current. However, the existing equivalent circuit parameter calculation methods considering field leakage reactance cannot achieve time-varying parameters. A calculation method of time-varying equivalent circuit parameters based on a back propagation neural network algorithm is proposed, which solves the calculation problem of time-varying equivalent circuit parameters considering field mutual leakage reactance. Then, a 300MVar condenser is taken as the research object, and the proposed method is used to simulate the different operating conditions of the condenser and verified by the finite element method and experiment. The results show that the method improves the calculation accuracy of the equivalent circuit parameter model, reduces the calculation time, and applies to different operating conditions.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.12435","citationCount":"0","resultStr":"{\"title\":\"A method for calculating the time-varying equivalent circuit parameters of large-capacity synchronous condenser considering field mutual leakage reactance\",\"authors\":\"Xiao Han, Yanping Liang, Xu Bian, Weihao Wang\",\"doi\":\"10.1049/elp2.12435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Accurate calculation of equivalent circuit parameters is a prerequisite for accurately calculating the large-capacity synchronous condenser parameter model. Due to its special transient operating conditions, the high transient magnetic saturation effect during operation causes the non-linearity and time-varying of the equivalent circuit parameters. The field mutual leakage reactance is the critical factor affecting the field current, and the time-varying of the equivalent circuit parameters is closely related to the field current. However, the existing equivalent circuit parameter calculation methods considering field leakage reactance cannot achieve time-varying parameters. A calculation method of time-varying equivalent circuit parameters based on a back propagation neural network algorithm is proposed, which solves the calculation problem of time-varying equivalent circuit parameters considering field mutual leakage reactance. Then, a 300MVar condenser is taken as the research object, and the proposed method is used to simulate the different operating conditions of the condenser and verified by the finite element method and experiment. The results show that the method improves the calculation accuracy of the equivalent circuit parameter model, reduces the calculation time, and applies to different operating conditions.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.12435\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/elp2.12435\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/elp2.12435","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A method for calculating the time-varying equivalent circuit parameters of large-capacity synchronous condenser considering field mutual leakage reactance
Accurate calculation of equivalent circuit parameters is a prerequisite for accurately calculating the large-capacity synchronous condenser parameter model. Due to its special transient operating conditions, the high transient magnetic saturation effect during operation causes the non-linearity and time-varying of the equivalent circuit parameters. The field mutual leakage reactance is the critical factor affecting the field current, and the time-varying of the equivalent circuit parameters is closely related to the field current. However, the existing equivalent circuit parameter calculation methods considering field leakage reactance cannot achieve time-varying parameters. A calculation method of time-varying equivalent circuit parameters based on a back propagation neural network algorithm is proposed, which solves the calculation problem of time-varying equivalent circuit parameters considering field mutual leakage reactance. Then, a 300MVar condenser is taken as the research object, and the proposed method is used to simulate the different operating conditions of the condenser and verified by the finite element method and experiment. The results show that the method improves the calculation accuracy of the equivalent circuit parameter model, reduces the calculation time, and applies to different operating conditions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.