在 ≈190-388 K 温度范围内工作的钯锌纳米线表面工程氢传感技术

Zhenxu Li, Lingling Du, Xiaxia Xing, Xinhua Zhao, Xiaoyu Chen, Xiaohu Huang, Dachi Yang
{"title":"在 ≈190-388 K 温度范围内工作的钯锌纳米线表面工程氢传感技术","authors":"Zhenxu Li,&nbsp;Lingling Du,&nbsp;Xiaxia Xing,&nbsp;Xinhua Zhao,&nbsp;Xiaoyu Chen,&nbsp;Xiaohu Huang,&nbsp;Dachi Yang","doi":"10.1002/adsr.202400011","DOIUrl":null,"url":null,"abstract":"<p>Reliable detection of hydrogen (H<sub>2</sub>) leakage at low temperatures (e.g., &lt; 273 K) is highly desired in those critical environments that may cause failure in detection, which needs further development. Herein, H<sub>2</sub> sensing that can work at ≈190–388 K temperature range has been developed by integrating palladium and zinc nanowires enwrapped with nanosheets (PdZn NWs) as the sensing materials, which have been prepared via combined anodic aluminum oxide (AAO) template-confined electrodeposition and surface engineering. Typically, as-synthesized PdZn NWs with a diameter of ≈50 nm present rough surfaces, along which abundant pores and fractures have been observed. Beneficially, the PdZn NWs show a lower critical temperature (≈190 K) of the “reverse sensing behavior” than that of pure Pd NWs (287 K), indicating the PdZn NWs are able to work at ≈190–388 K temperature range. Theoretically, such stable H<sub>2</sub> sensing can be attributed to the rough surfaces and chemical composition of PdZn NWs, which facilitates H atoms diffusion and accommodates the expansion of PdHx intermediates. The surface engineering of PdZn NWs may contribute to stable H<sub>2</sub> sensing at low temperatures, which can be applied to other gas-sensing materials working at low temperatures.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400011","citationCount":"0","resultStr":"{\"title\":\"Surface Engineering on Palladium and Zinc Nanowires for Hydrogen Sensing Working at ≈190–388 K Temperature Range\",\"authors\":\"Zhenxu Li,&nbsp;Lingling Du,&nbsp;Xiaxia Xing,&nbsp;Xinhua Zhao,&nbsp;Xiaoyu Chen,&nbsp;Xiaohu Huang,&nbsp;Dachi Yang\",\"doi\":\"10.1002/adsr.202400011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Reliable detection of hydrogen (H<sub>2</sub>) leakage at low temperatures (e.g., &lt; 273 K) is highly desired in those critical environments that may cause failure in detection, which needs further development. Herein, H<sub>2</sub> sensing that can work at ≈190–388 K temperature range has been developed by integrating palladium and zinc nanowires enwrapped with nanosheets (PdZn NWs) as the sensing materials, which have been prepared via combined anodic aluminum oxide (AAO) template-confined electrodeposition and surface engineering. Typically, as-synthesized PdZn NWs with a diameter of ≈50 nm present rough surfaces, along which abundant pores and fractures have been observed. Beneficially, the PdZn NWs show a lower critical temperature (≈190 K) of the “reverse sensing behavior” than that of pure Pd NWs (287 K), indicating the PdZn NWs are able to work at ≈190–388 K temperature range. Theoretically, such stable H<sub>2</sub> sensing can be attributed to the rough surfaces and chemical composition of PdZn NWs, which facilitates H atoms diffusion and accommodates the expansion of PdHx intermediates. The surface engineering of PdZn NWs may contribute to stable H<sub>2</sub> sensing at low temperatures, which can be applied to other gas-sensing materials working at low temperatures.</p>\",\"PeriodicalId\":100037,\"journal\":{\"name\":\"Advanced Sensor Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400011\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Sensor Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adsr.202400011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sensor Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsr.202400011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在那些可能导致检测失败的关键环境中,人们非常需要在低温(例如 273 K)下可靠地检测氢气(H2)泄漏,这需要进一步开发。在此,通过阳极氧化铝(AAO)模板约束电沉积和表面工程相结合的方法制备的钯锌纳米线包覆纳米片(PdZn NWs)作为传感材料,开发了可在≈190-388 K 温度范围内工作的 H2 传感技术。通常情况下,合成的 PdZn NWs 直径≈50 纳米,表面粗糙,可观察到大量的孔隙和裂缝。有利的是,PdZn NWs 的 "反向传感行为 "临界温度(≈190 K)低于纯 Pd NWs 的临界温度(287 K),这表明 PdZn NWs 能够在 ≈190-388 K 的温度范围内工作。从理论上讲,这种稳定的 H2 传感可归因于 PdZn NWs 的粗糙表面和化学成分,这有利于 H 原子的扩散并容纳 PdHx 中间体的膨胀。PdZn NWs 的表面工程可能有助于在低温条件下实现稳定的 H2 传感,这一点可应用于在低温条件下工作的其他气体传感材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Surface Engineering on Palladium and Zinc Nanowires for Hydrogen Sensing Working at ≈190–388 K Temperature Range

Surface Engineering on Palladium and Zinc Nanowires for Hydrogen Sensing Working at ≈190–388 K Temperature Range

Reliable detection of hydrogen (H2) leakage at low temperatures (e.g., < 273 K) is highly desired in those critical environments that may cause failure in detection, which needs further development. Herein, H2 sensing that can work at ≈190–388 K temperature range has been developed by integrating palladium and zinc nanowires enwrapped with nanosheets (PdZn NWs) as the sensing materials, which have been prepared via combined anodic aluminum oxide (AAO) template-confined electrodeposition and surface engineering. Typically, as-synthesized PdZn NWs with a diameter of ≈50 nm present rough surfaces, along which abundant pores and fractures have been observed. Beneficially, the PdZn NWs show a lower critical temperature (≈190 K) of the “reverse sensing behavior” than that of pure Pd NWs (287 K), indicating the PdZn NWs are able to work at ≈190–388 K temperature range. Theoretically, such stable H2 sensing can be attributed to the rough surfaces and chemical composition of PdZn NWs, which facilitates H atoms diffusion and accommodates the expansion of PdHx intermediates. The surface engineering of PdZn NWs may contribute to stable H2 sensing at low temperatures, which can be applied to other gas-sensing materials working at low temperatures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信