{"title":"应用生物技术延长园艺作物的货架期","authors":"Tesfahun Belay Mihrete, Melkamu Alemayehu Workie, Fenta Assefa Bogale","doi":"10.1002/sae2.12121","DOIUrl":null,"url":null,"abstract":"<p>Horticultural crops, encompassing fruits, vegetables, spices and herbs, play a critical role in providing nutrition and health-promoting compounds. However, their limited storability challenges producers and exporters, resulting in significant postharvest losses. Traditional preservation methods like cold storage, controlled atmosphere storage and packaging techniques have been employed to prolong shelf life, but they have their constraints. Biotechnological interventions, notably genetic engineering, offer promising avenues to address these limitations. Genetic modifications target physiological processes such as ripening and ethylene production, enhancing resistance to postharvest diseases and improving nutritional profiles. For instance, genetically modified tomatoes with prolonged shelf life and reduced susceptibility to fungal infections showcase the potential of genetic engineering. Similarly, genetic modification has been successfully applied to various horticultural crops like apples, bananas and mushrooms, resulting in decreased browning and heightened disease resistance. Emerging technologies such as modified atmosphere packaging, edible coatings and nanoparticle treatments further augment efforts to extend shelf life. Despite their benefits, the debate surrounding genetically modified fruits and vegetables persists due to concerns regarding environmental impact, health implications and ethical considerations. This review offers insights into current practices and research endeavours aimed at enhancing the shelf life of horticultural crops through both traditional and biotechnological means, shedding light on opportunities and hurdles in this domain. Future directions include intensifying basic research to unravel molecular processes in harvested tissues, prioritising investigations that directly benefit consumers and developing sustainable and cost-effective approaches for emerging technologies like modified atmosphere packaging, edible coatings and postharvest treatments.</p>","PeriodicalId":100834,"journal":{"name":"Journal of Sustainable Agriculture and Environment","volume":"3 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sae2.12121","citationCount":"0","resultStr":"{\"title\":\"Applications of biotechnology for enhancing the shelf life of horticultural crops\",\"authors\":\"Tesfahun Belay Mihrete, Melkamu Alemayehu Workie, Fenta Assefa Bogale\",\"doi\":\"10.1002/sae2.12121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Horticultural crops, encompassing fruits, vegetables, spices and herbs, play a critical role in providing nutrition and health-promoting compounds. However, their limited storability challenges producers and exporters, resulting in significant postharvest losses. Traditional preservation methods like cold storage, controlled atmosphere storage and packaging techniques have been employed to prolong shelf life, but they have their constraints. Biotechnological interventions, notably genetic engineering, offer promising avenues to address these limitations. Genetic modifications target physiological processes such as ripening and ethylene production, enhancing resistance to postharvest diseases and improving nutritional profiles. For instance, genetically modified tomatoes with prolonged shelf life and reduced susceptibility to fungal infections showcase the potential of genetic engineering. Similarly, genetic modification has been successfully applied to various horticultural crops like apples, bananas and mushrooms, resulting in decreased browning and heightened disease resistance. Emerging technologies such as modified atmosphere packaging, edible coatings and nanoparticle treatments further augment efforts to extend shelf life. Despite their benefits, the debate surrounding genetically modified fruits and vegetables persists due to concerns regarding environmental impact, health implications and ethical considerations. This review offers insights into current practices and research endeavours aimed at enhancing the shelf life of horticultural crops through both traditional and biotechnological means, shedding light on opportunities and hurdles in this domain. Future directions include intensifying basic research to unravel molecular processes in harvested tissues, prioritising investigations that directly benefit consumers and developing sustainable and cost-effective approaches for emerging technologies like modified atmosphere packaging, edible coatings and postharvest treatments.</p>\",\"PeriodicalId\":100834,\"journal\":{\"name\":\"Journal of Sustainable Agriculture and Environment\",\"volume\":\"3 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sae2.12121\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sustainable Agriculture and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/sae2.12121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Agriculture and Environment","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/sae2.12121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Applications of biotechnology for enhancing the shelf life of horticultural crops
Horticultural crops, encompassing fruits, vegetables, spices and herbs, play a critical role in providing nutrition and health-promoting compounds. However, their limited storability challenges producers and exporters, resulting in significant postharvest losses. Traditional preservation methods like cold storage, controlled atmosphere storage and packaging techniques have been employed to prolong shelf life, but they have their constraints. Biotechnological interventions, notably genetic engineering, offer promising avenues to address these limitations. Genetic modifications target physiological processes such as ripening and ethylene production, enhancing resistance to postharvest diseases and improving nutritional profiles. For instance, genetically modified tomatoes with prolonged shelf life and reduced susceptibility to fungal infections showcase the potential of genetic engineering. Similarly, genetic modification has been successfully applied to various horticultural crops like apples, bananas and mushrooms, resulting in decreased browning and heightened disease resistance. Emerging technologies such as modified atmosphere packaging, edible coatings and nanoparticle treatments further augment efforts to extend shelf life. Despite their benefits, the debate surrounding genetically modified fruits and vegetables persists due to concerns regarding environmental impact, health implications and ethical considerations. This review offers insights into current practices and research endeavours aimed at enhancing the shelf life of horticultural crops through both traditional and biotechnological means, shedding light on opportunities and hurdles in this domain. Future directions include intensifying basic research to unravel molecular processes in harvested tissues, prioritising investigations that directly benefit consumers and developing sustainable and cost-effective approaches for emerging technologies like modified atmosphere packaging, edible coatings and postharvest treatments.