粗略微分方程的适度偏差

IF 0.8 3区 数学 Q2 MATHEMATICS
Yuzuru Inahama, Yong Xu, Xiaoyu Yang
{"title":"粗略微分方程的适度偏差","authors":"Yuzuru Inahama,&nbsp;Yong Xu,&nbsp;Xiaoyu Yang","doi":"10.1112/blms.13097","DOIUrl":null,"url":null,"abstract":"<p>Small noise problems are quite important for all types of stochastic differential equations. In this paper, we focus on rough differential equations driven by scaled fractional Brownian rough path with Hurst parameter <span></span><math>\n <semantics>\n <mrow>\n <mi>H</mi>\n <mo>∈</mo>\n <mo>(</mo>\n <mn>1</mn>\n <mo>/</mo>\n <mn>4</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>/</mo>\n <mn>2</mn>\n <mo>]</mo>\n </mrow>\n <annotation>$H\\in (1/4, 1/2]$</annotation>\n </semantics></math>. We prove a moderate deviation principle for this equation as the scale parameter tends to zero.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 8","pages":"2738-2748"},"PeriodicalIF":0.8000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Moderate deviations for rough differential equations\",\"authors\":\"Yuzuru Inahama,&nbsp;Yong Xu,&nbsp;Xiaoyu Yang\",\"doi\":\"10.1112/blms.13097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Small noise problems are quite important for all types of stochastic differential equations. In this paper, we focus on rough differential equations driven by scaled fractional Brownian rough path with Hurst parameter <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>H</mi>\\n <mo>∈</mo>\\n <mo>(</mo>\\n <mn>1</mn>\\n <mo>/</mo>\\n <mn>4</mn>\\n <mo>,</mo>\\n <mn>1</mn>\\n <mo>/</mo>\\n <mn>2</mn>\\n <mo>]</mo>\\n </mrow>\\n <annotation>$H\\\\in (1/4, 1/2]$</annotation>\\n </semantics></math>. We prove a moderate deviation principle for this equation as the scale parameter tends to zero.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 8\",\"pages\":\"2738-2748\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13097\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13097","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

小噪声问题对于所有类型的随机微分方程都相当重要。在本文中,我们重点研究由 Hurst 参数 H∈ ( 1 / 4 , 1 / 2 ]$ 的缩放分数布朗粗糙路径驱动的粗糙微分方程。 $H\in (1/4, 1/2]$ 。当尺度参数趋近于零时,我们证明了该方程的适度偏差原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Moderate deviations for rough differential equations

Small noise problems are quite important for all types of stochastic differential equations. In this paper, we focus on rough differential equations driven by scaled fractional Brownian rough path with Hurst parameter H ( 1 / 4 , 1 / 2 ] $H\in (1/4, 1/2]$ . We prove a moderate deviation principle for this equation as the scale parameter tends to zero.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信