Johannes Diller, Ludwig Siebert, Michael Winkler, Dorina Siebert, Jakob Blankenhagen, David Wenzler, Christina Radlbeck, Martin Mensinger
{"title":"利用μCT和机器学习算法检测气孔和表面拓扑并对其进行分类的综合方法,用于对利用激光束进行金属粉末床融合制造的 316L 进行疲劳评估","authors":"Johannes Diller, Ludwig Siebert, Michael Winkler, Dorina Siebert, Jakob Blankenhagen, David Wenzler, Christina Radlbeck, Martin Mensinger","doi":"10.1111/ffe.14375","DOIUrl":null,"url":null,"abstract":"<p>This research aims to detect and analyze critical internal and surface defects in metal components manufactured by powder bed fusion of metals using a laser beam (PBF-LB/M). The aim is to assess their impact on the fatigue behavior. Therefore, a combination of methods, including image processing of micro-computed tomography (\n<span></span><math>\n <mi>μ</mi></math>CT) scans, fatigue testing, and machine learning, was applied. A workflow was established to contribute to the nondestructive assessment of component quality and mechanical properties. Additionally, this study illustrates the application of machine learning to address a classification problem, specifically the categorization of pores into gas pores and lack of fusion pores. Although it was shown that internal defects exhibited a reduced impact on fatigue behavior compared with surface defects, it was noted that surface defects exert a higher influence on fatigue behavior. A machine learning algorithm was developed to predict the fatigue life using surface defect features as input parameters.</p>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"47 9","pages":"3392-3407"},"PeriodicalIF":3.1000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An integrated approach for detecting and classifying pores and surface topology for fatigue assessment 316L manufactured by powder bed fusion of metals using a laser beam using \\n\\n μCT and machine learning algorithms\",\"authors\":\"Johannes Diller, Ludwig Siebert, Michael Winkler, Dorina Siebert, Jakob Blankenhagen, David Wenzler, Christina Radlbeck, Martin Mensinger\",\"doi\":\"10.1111/ffe.14375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This research aims to detect and analyze critical internal and surface defects in metal components manufactured by powder bed fusion of metals using a laser beam (PBF-LB/M). The aim is to assess their impact on the fatigue behavior. Therefore, a combination of methods, including image processing of micro-computed tomography (\\n<span></span><math>\\n <mi>μ</mi></math>CT) scans, fatigue testing, and machine learning, was applied. A workflow was established to contribute to the nondestructive assessment of component quality and mechanical properties. Additionally, this study illustrates the application of machine learning to address a classification problem, specifically the categorization of pores into gas pores and lack of fusion pores. Although it was shown that internal defects exhibited a reduced impact on fatigue behavior compared with surface defects, it was noted that surface defects exert a higher influence on fatigue behavior. A machine learning algorithm was developed to predict the fatigue life using surface defect features as input parameters.</p>\",\"PeriodicalId\":12298,\"journal\":{\"name\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"volume\":\"47 9\",\"pages\":\"3392-3407\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14375\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14375","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
An integrated approach for detecting and classifying pores and surface topology for fatigue assessment 316L manufactured by powder bed fusion of metals using a laser beam using
μCT and machine learning algorithms
This research aims to detect and analyze critical internal and surface defects in metal components manufactured by powder bed fusion of metals using a laser beam (PBF-LB/M). The aim is to assess their impact on the fatigue behavior. Therefore, a combination of methods, including image processing of micro-computed tomography (
CT) scans, fatigue testing, and machine learning, was applied. A workflow was established to contribute to the nondestructive assessment of component quality and mechanical properties. Additionally, this study illustrates the application of machine learning to address a classification problem, specifically the categorization of pores into gas pores and lack of fusion pores. Although it was shown that internal defects exhibited a reduced impact on fatigue behavior compared with surface defects, it was noted that surface defects exert a higher influence on fatigue behavior. A machine learning algorithm was developed to predict the fatigue life using surface defect features as input parameters.
期刊介绍:
Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.