森田立川高等对应

IF 0.8 3区 数学 Q2 MATHEMATICS
Tiago Cruz
{"title":"森田立川高等对应","authors":"Tiago Cruz","doi":"10.1112/blms.13090","DOIUrl":null,"url":null,"abstract":"<p>Important correspondences in representation theory can be regarded as restrictions of the Morita–Tachikawa correspondence. Moreover, this correspondence motivates the study of many classes of algebras like Morita algebras and gendo-symmetric algebras. Explicitly, the Morita–Tachikawa correspondence describes that endomorphism algebras of generators–cogenerators over finite-dimensional algebras are exactly the finite-dimensional algebras with dominant dimension at least two. In this paper, we introduce the concepts of quasi-generators and quasi-cogenerators that generalise generators and cogenerators, respectively. Using these new concepts, we present higher versions of the Morita–Tachikawa correspondence that take into account relative dominant dimension with respect to a self-orthogonal module with arbitrary projective and injective dimensions. These new versions also hold over Noetherian algebras that are finitely generated and projective over a commutative Noetherian ring.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 8","pages":"2647-2660"},"PeriodicalIF":0.8000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13090","citationCount":"0","resultStr":"{\"title\":\"Higher Morita–Tachikawa correspondence\",\"authors\":\"Tiago Cruz\",\"doi\":\"10.1112/blms.13090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Important correspondences in representation theory can be regarded as restrictions of the Morita–Tachikawa correspondence. Moreover, this correspondence motivates the study of many classes of algebras like Morita algebras and gendo-symmetric algebras. Explicitly, the Morita–Tachikawa correspondence describes that endomorphism algebras of generators–cogenerators over finite-dimensional algebras are exactly the finite-dimensional algebras with dominant dimension at least two. In this paper, we introduce the concepts of quasi-generators and quasi-cogenerators that generalise generators and cogenerators, respectively. Using these new concepts, we present higher versions of the Morita–Tachikawa correspondence that take into account relative dominant dimension with respect to a self-orthogonal module with arbitrary projective and injective dimensions. These new versions also hold over Noetherian algebras that are finitely generated and projective over a commutative Noetherian ring.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 8\",\"pages\":\"2647-2660\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13090\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13090\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13090","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

表示理论中的重要对应关系可视为森田立川对应关系的限制。此外,这一对应关系也是研究森田代数和元对称代数等许多代数类别的动力。明确地说,森田-立川对应关系描述了有限维代数上的生成器-同源器内态代数正是主维至少为二的有限维代数。在本文中,我们引入了准生成器和准协同生成器的概念,它们分别概括了生成器和协同生成器。利用这些新概念,我们提出了莫里塔-立川对应关系的更高版本,其中考虑了相对于具有任意投影维数和注入维数的自正交模块的相对主维数。这些新版本也适用于在交换诺特环上有限生成和投影的诺特代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Higher Morita–Tachikawa correspondence

Higher Morita–Tachikawa correspondence

Important correspondences in representation theory can be regarded as restrictions of the Morita–Tachikawa correspondence. Moreover, this correspondence motivates the study of many classes of algebras like Morita algebras and gendo-symmetric algebras. Explicitly, the Morita–Tachikawa correspondence describes that endomorphism algebras of generators–cogenerators over finite-dimensional algebras are exactly the finite-dimensional algebras with dominant dimension at least two. In this paper, we introduce the concepts of quasi-generators and quasi-cogenerators that generalise generators and cogenerators, respectively. Using these new concepts, we present higher versions of the Morita–Tachikawa correspondence that take into account relative dominant dimension with respect to a self-orthogonal module with arbitrary projective and injective dimensions. These new versions also hold over Noetherian algebras that are finitely generated and projective over a commutative Noetherian ring.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信