{"title":"聚合物涂料中的沸石基防腐蚀颜料:简评","authors":"Sergiy Korniy, Mariia-Olena Danyliak, Ivan Zin","doi":"10.1155/2024/6533170","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The article provides a brief overview of the use of zeolites as environmentally safe anticorrosion pigments for organic coatings on metals. The number of studies on zeolite-based inhibiting pigments has increased significantly in recent years, due to the need to replace chromates and reduce the content of phosphate corrosion inhibitors. Based on the results available in the literature, an assessment was conducted on the inhibitory properties of complex zeolite pigments obtained by various methods. Emphasis is placed on the advantages and disadvantages of ion exchange modification of zeolites with inhibitory substances and mechanochemical synthesis of pigments. Zeolites have a wide perspective in anticorrosion technologies due to their porous structure, large surface area, high pore volume, and the ability to accumulate inhibitory ions and molecules. Such properties of zeolites make possible their use for the development of self-healing or “smart” polymer coatings. Considering the environmental safety of zeolites and their excellent thermal and chemical stability, anti-corrosion polymer coatings inhibited by zeolite pigments could become an effective environmentally friendly alternative to chromate-based protective coatings. The main trends and prospects for the development of research in this domain are presented.</p>\n </div>","PeriodicalId":7372,"journal":{"name":"Advances in Polymer Technology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/6533170","citationCount":"0","resultStr":"{\"title\":\"Zeolite-Based Anti-corrosion Pigments for Polymer Coatings: A Brief Review\",\"authors\":\"Sergiy Korniy, Mariia-Olena Danyliak, Ivan Zin\",\"doi\":\"10.1155/2024/6533170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>The article provides a brief overview of the use of zeolites as environmentally safe anticorrosion pigments for organic coatings on metals. The number of studies on zeolite-based inhibiting pigments has increased significantly in recent years, due to the need to replace chromates and reduce the content of phosphate corrosion inhibitors. Based on the results available in the literature, an assessment was conducted on the inhibitory properties of complex zeolite pigments obtained by various methods. Emphasis is placed on the advantages and disadvantages of ion exchange modification of zeolites with inhibitory substances and mechanochemical synthesis of pigments. Zeolites have a wide perspective in anticorrosion technologies due to their porous structure, large surface area, high pore volume, and the ability to accumulate inhibitory ions and molecules. Such properties of zeolites make possible their use for the development of self-healing or “smart” polymer coatings. Considering the environmental safety of zeolites and their excellent thermal and chemical stability, anti-corrosion polymer coatings inhibited by zeolite pigments could become an effective environmentally friendly alternative to chromate-based protective coatings. The main trends and prospects for the development of research in this domain are presented.</p>\\n </div>\",\"PeriodicalId\":7372,\"journal\":{\"name\":\"Advances in Polymer Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/6533170\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Polymer Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/6533170\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Polymer Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/6533170","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Zeolite-Based Anti-corrosion Pigments for Polymer Coatings: A Brief Review
The article provides a brief overview of the use of zeolites as environmentally safe anticorrosion pigments for organic coatings on metals. The number of studies on zeolite-based inhibiting pigments has increased significantly in recent years, due to the need to replace chromates and reduce the content of phosphate corrosion inhibitors. Based on the results available in the literature, an assessment was conducted on the inhibitory properties of complex zeolite pigments obtained by various methods. Emphasis is placed on the advantages and disadvantages of ion exchange modification of zeolites with inhibitory substances and mechanochemical synthesis of pigments. Zeolites have a wide perspective in anticorrosion technologies due to their porous structure, large surface area, high pore volume, and the ability to accumulate inhibitory ions and molecules. Such properties of zeolites make possible their use for the development of self-healing or “smart” polymer coatings. Considering the environmental safety of zeolites and their excellent thermal and chemical stability, anti-corrosion polymer coatings inhibited by zeolite pigments could become an effective environmentally friendly alternative to chromate-based protective coatings. The main trends and prospects for the development of research in this domain are presented.
期刊介绍:
Advances in Polymer Technology publishes articles reporting important developments in polymeric materials, their manufacture and processing, and polymer product design, as well as those considering the economic and environmental impacts of polymer technology. The journal primarily caters to researchers, technologists, engineers, consultants, and production personnel.