{"title":"关于功能性连续最小值","authors":"F. Amoroso, D. Masser, U. Zannier","doi":"10.1112/blms.13096","DOIUrl":null,"url":null,"abstract":"<p>In the classical Geometry of Numbers, the calculation of successive minima may be quite difficult, even in <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mn>2</mn>\n </msup>\n <annotation>${\\bf R}^2$</annotation>\n </semantics></math> using the norm coming from a distance function associated to a set. In the literature, there seem to be hardly any analogues when <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>${\\bf R}$</annotation>\n </semantics></math> is replaced by the algebraic closure of a function field in one variable and one uses a norm arising from the absolute height. Here, we calculate a one-parameter family of examples that naturally arose in our recent paper on bounded heights. We also comment on whether the minima are attained.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 8","pages":"2727-2737"},"PeriodicalIF":0.8000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On functional successive minima\",\"authors\":\"F. Amoroso, D. Masser, U. Zannier\",\"doi\":\"10.1112/blms.13096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the classical Geometry of Numbers, the calculation of successive minima may be quite difficult, even in <span></span><math>\\n <semantics>\\n <msup>\\n <mi>R</mi>\\n <mn>2</mn>\\n </msup>\\n <annotation>${\\\\bf R}^2$</annotation>\\n </semantics></math> using the norm coming from a distance function associated to a set. In the literature, there seem to be hardly any analogues when <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>${\\\\bf R}$</annotation>\\n </semantics></math> is replaced by the algebraic closure of a function field in one variable and one uses a norm arising from the absolute height. Here, we calculate a one-parameter family of examples that naturally arose in our recent paper on bounded heights. We also comment on whether the minima are attained.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 8\",\"pages\":\"2727-2737\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13096\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13096","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在经典的《数的几何》中,即使在 R 2 ${\bf R}^2$ 中使用来自与集合相关的距离函数的规范,计算连续最小值也可能相当困难。在文献中,当 R ${\bf R}$ 被单变量函数场的代数闭包所代替,并使用由绝对高度产生的规范时,似乎几乎没有类似的方法。在这里,我们计算了我们最近关于有界高的论文中自然产生的一个参数族的例子。我们还对是否达到最小值进行了评论。
In the classical Geometry of Numbers, the calculation of successive minima may be quite difficult, even in using the norm coming from a distance function associated to a set. In the literature, there seem to be hardly any analogues when is replaced by the algebraic closure of a function field in one variable and one uses a norm arising from the absolute height. Here, we calculate a one-parameter family of examples that naturally arose in our recent paper on bounded heights. We also comment on whether the minima are attained.