多正交多项式和相应可积分方程的确定性方法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Adam Doliwa
{"title":"多正交多项式和相应可积分方程的确定性方法","authors":"Adam Doliwa","doi":"10.1111/sapm.12726","DOIUrl":null,"url":null,"abstract":"<p>We study multiple orthogonal polynomials exploiting their explicit determinantal representation in terms of moments. Our reasoning follows that applied to solve the Hermite–Padé approximation and interpolation problems. We also study families of multiple orthogonal polynomials obtained by variation of the measures known from the theory of discrete-time Toda lattice equations. We present determinantal proofs of certain fundamental results of the theory, obtained earlier by other authors in a different setting. We also derive quadratic identities satisfied by the polynomials, which are new elements of the theory. Resulting equations allow to present multiple orthogonal polynomials within the theory of integrable systems.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determinantal approach to multiple orthogonal polynomials and the corresponding integrable equations\",\"authors\":\"Adam Doliwa\",\"doi\":\"10.1111/sapm.12726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study multiple orthogonal polynomials exploiting their explicit determinantal representation in terms of moments. Our reasoning follows that applied to solve the Hermite–Padé approximation and interpolation problems. We also study families of multiple orthogonal polynomials obtained by variation of the measures known from the theory of discrete-time Toda lattice equations. We present determinantal proofs of certain fundamental results of the theory, obtained earlier by other authors in a different setting. We also derive quadratic identities satisfied by the polynomials, which are new elements of the theory. Resulting equations allow to present multiple orthogonal polynomials within the theory of integrable systems.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12726\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们利用矩的明确行列式表示来研究多重正交多项式。我们的推理沿用了解决 Hermite-Padé 近似和插值问题的方法。我们还研究了通过离散时间户田格子方程理论中已知度量的变化而获得的多重正交多项式族。我们提出了该理论某些基本结果的行列式证明,这些结果早先由其他作者在不同的背景下获得。我们还推导出了多项式所满足的二次等式,这是该理论的新元素。由此得出的方程允许在可积分系统理论中提出多重正交多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determinantal approach to multiple orthogonal polynomials and the corresponding integrable equations

We study multiple orthogonal polynomials exploiting their explicit determinantal representation in terms of moments. Our reasoning follows that applied to solve the Hermite–Padé approximation and interpolation problems. We also study families of multiple orthogonal polynomials obtained by variation of the measures known from the theory of discrete-time Toda lattice equations. We present determinantal proofs of certain fundamental results of the theory, obtained earlier by other authors in a different setting. We also derive quadratic identities satisfied by the polynomials, which are new elements of the theory. Resulting equations allow to present multiple orthogonal polynomials within the theory of integrable systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信