走向 Gyárfás-Sumner 猜想的诱导盖和诱导分区上的拉姆齐型问题

Pub Date : 2024-06-06 DOI:10.1002/jgt.23124
Shuya Chiba, Michitaka Furuya
{"title":"走向 Gyárfás-Sumner 猜想的诱导盖和诱导分区上的拉姆齐型问题","authors":"Shuya Chiba,&nbsp;Michitaka Furuya","doi":"10.1002/jgt.23124","DOIUrl":null,"url":null,"abstract":"<p>Gyárfás and Sumner independently conjectured that for every tree <span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n </mrow>\n <annotation> $T$</annotation>\n </semantics></math>, there exists a function <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>f</mi>\n \n <mi>T</mi>\n </msub>\n \n <mo>:</mo>\n \n <mi>N</mi>\n \n <mo>→</mo>\n \n <mi>N</mi>\n </mrow>\n <annotation> ${f}_{T}:{\\mathbb{N}}\\to {\\mathbb{N}}$</annotation>\n </semantics></math> such that every <span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n </mrow>\n <annotation> $T$</annotation>\n </semantics></math>-free graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> satisfies <span></span><math>\n <semantics>\n <mrow>\n <mi>χ</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <msub>\n <mi>f</mi>\n \n <mi>T</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>ω</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\chi (G)\\le {f}_{T}(\\omega (G))$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <mi>χ</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\chi (G)$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>ω</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\omega (G)$</annotation>\n </semantics></math> are the <i>chromatic number</i> and the <i>clique number</i> of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>, respectively. This conjecture gives a solution of a Ramsey-type problem on the chromatic number. For a graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>, the <i>induced SP-cover number</i> <span></span><math>\n <semantics>\n <mrow>\n <mtext>inspc</mtext>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\text{inspc}(G)$</annotation>\n </semantics></math> (resp. the <i>induced SP-partition number</i> <span></span><math>\n <semantics>\n <mrow>\n <mtext>inspp</mtext>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\text{inspp}(G)$</annotation>\n </semantics></math>) of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is the minimum cardinality of a family <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n </mrow>\n <annotation> ${\\mathscr{P}}$</annotation>\n </semantics></math> of induced subgraphs of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> such that each element of <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n </mrow>\n <annotation> ${\\mathscr{P}}$</annotation>\n </semantics></math> is a star or a path and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mo>⋃</mo>\n <mrow>\n <mi>P</mi>\n \n <mo>∈</mo>\n \n <mi>P</mi>\n </mrow>\n </msub>\n \n <mi>V</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>P</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>V</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${\\bigcup }_{P\\in {\\mathscr{P}}}V(P)=V(G)$</annotation>\n </semantics></math> (resp. <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mover>\n <mo>⋃</mo>\n \n <mo>˙</mo>\n </mover>\n <mrow>\n <mi>P</mi>\n \n <mo>∈</mo>\n \n <mi>P</mi>\n </mrow>\n </msub>\n \n <mi>V</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>P</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>V</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${\\dot{\\bigcup }}_{P\\in {\\mathscr{P}}}V(P)=V(G)$</annotation>\n </semantics></math>). Such two invariants are directly related concepts to the chromatic number. From the viewpoint of this fact, we focus on Ramsey-type problems for two invariants <span></span><math>\n <semantics>\n <mrow>\n <mtext>inspc</mtext>\n </mrow>\n <annotation> $\\text{inspc}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mtext>inspp</mtext>\n </mrow>\n <annotation> $\\text{inspp}$</annotation>\n </semantics></math>, which are analogies of the Gyárfás-Sumner conjecture, and settle them. As a corollary of our results, we also settle other Ramsey-type problems for widely studied invariants.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ramsey-type problems on induced covers and induced partitions toward the Gyárfás–Sumner conjecture\",\"authors\":\"Shuya Chiba,&nbsp;Michitaka Furuya\",\"doi\":\"10.1002/jgt.23124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Gyárfás and Sumner independently conjectured that for every tree <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n <annotation> $T$</annotation>\\n </semantics></math>, there exists a function <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>f</mi>\\n \\n <mi>T</mi>\\n </msub>\\n \\n <mo>:</mo>\\n \\n <mi>N</mi>\\n \\n <mo>→</mo>\\n \\n <mi>N</mi>\\n </mrow>\\n <annotation> ${f}_{T}:{\\\\mathbb{N}}\\\\to {\\\\mathbb{N}}$</annotation>\\n </semantics></math> such that every <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n <annotation> $T$</annotation>\\n </semantics></math>-free graph <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> satisfies <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>χ</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≤</mo>\\n \\n <msub>\\n <mi>f</mi>\\n \\n <mi>T</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>ω</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\chi (G)\\\\le {f}_{T}(\\\\omega (G))$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>χ</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\chi (G)$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ω</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\omega (G)$</annotation>\\n </semantics></math> are the <i>chromatic number</i> and the <i>clique number</i> of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math>, respectively. This conjecture gives a solution of a Ramsey-type problem on the chromatic number. For a graph <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math>, the <i>induced SP-cover number</i> <span></span><math>\\n <semantics>\\n <mrow>\\n <mtext>inspc</mtext>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\text{inspc}(G)$</annotation>\\n </semantics></math> (resp. the <i>induced SP-partition number</i> <span></span><math>\\n <semantics>\\n <mrow>\\n <mtext>inspp</mtext>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\text{inspp}(G)$</annotation>\\n </semantics></math>) of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> is the minimum cardinality of a family <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>P</mi>\\n </mrow>\\n <annotation> ${\\\\mathscr{P}}$</annotation>\\n </semantics></math> of induced subgraphs of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> such that each element of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>P</mi>\\n </mrow>\\n <annotation> ${\\\\mathscr{P}}$</annotation>\\n </semantics></math> is a star or a path and <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mo>⋃</mo>\\n <mrow>\\n <mi>P</mi>\\n \\n <mo>∈</mo>\\n \\n <mi>P</mi>\\n </mrow>\\n </msub>\\n \\n <mi>V</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>P</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mi>V</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\bigcup }_{P\\\\in {\\\\mathscr{P}}}V(P)=V(G)$</annotation>\\n </semantics></math> (resp. <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mover>\\n <mo>⋃</mo>\\n \\n <mo>˙</mo>\\n </mover>\\n <mrow>\\n <mi>P</mi>\\n \\n <mo>∈</mo>\\n \\n <mi>P</mi>\\n </mrow>\\n </msub>\\n \\n <mi>V</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>P</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mi>V</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\dot{\\\\bigcup }}_{P\\\\in {\\\\mathscr{P}}}V(P)=V(G)$</annotation>\\n </semantics></math>). Such two invariants are directly related concepts to the chromatic number. From the viewpoint of this fact, we focus on Ramsey-type problems for two invariants <span></span><math>\\n <semantics>\\n <mrow>\\n <mtext>inspc</mtext>\\n </mrow>\\n <annotation> $\\\\text{inspc}$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mtext>inspp</mtext>\\n </mrow>\\n <annotation> $\\\\text{inspp}$</annotation>\\n </semantics></math>, which are analogies of the Gyárfás-Sumner conjecture, and settle them. As a corollary of our results, we also settle other Ramsey-type problems for widely studied invariants.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Gyárfás 和 Sumner 独立猜想,对于每一棵树 T $T$ ,存在一个函数 f T : N → N ${f}_{T}:{\mathbb{N}}\to {\mathbb{N}}$ ,使得每一个 T $T$ -free graph G $G$ 满足 χ ( G ) ≤ f T ( ω ( G ) ) $\chi (G)\le {f}_{T}(\omega (G))$ ,其中 χ ( G ) $\chi (G)$ 和 ω ( G ) $\omega (G)$ 分别是 G $G$ 的色度数和小群数。这个猜想给出了关于色度数的拉姆齐式问题的解。对于图 G $G$,G $G$的诱导 SP-cover 数 inspc ( G ) $\text{inspc}(G)$ (或者诱导 SP-partition 数 inspp ( G ) $\text{inspp}(G)$ )是 G $G$ 的诱导子图的族 P ${\mathscr{P}}$ 的最小卡片度,使得 P ${\mathscr{P}}$ 的每个元素都是星或路径,并且⋃ P ∈ P V ( P ) = V ( G ) ${bigcup }_{P\in {\mathscr{P}}}V(P)=V(G)$ (或者诱导 SP-partition 数 inspp ( G ) $\text{inspp}(G)$ )是 G $G$ 的诱导子图的最小卡片度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Ramsey-type problems on induced covers and induced partitions toward the Gyárfás–Sumner conjecture

Gyárfás and Sumner independently conjectured that for every tree T $T$ , there exists a function f T : N N ${f}_{T}:{\mathbb{N}}\to {\mathbb{N}}$ such that every T $T$ -free graph G $G$ satisfies χ ( G ) f T ( ω ( G ) ) $\chi (G)\le {f}_{T}(\omega (G))$ , where χ ( G ) $\chi (G)$ and ω ( G ) $\omega (G)$ are the chromatic number and the clique number of G $G$ , respectively. This conjecture gives a solution of a Ramsey-type problem on the chromatic number. For a graph G $G$ , the induced SP-cover number inspc ( G ) $\text{inspc}(G)$ (resp. the induced SP-partition number inspp ( G ) $\text{inspp}(G)$ ) of G $G$ is the minimum cardinality of a family P ${\mathscr{P}}$ of induced subgraphs of G $G$ such that each element of P ${\mathscr{P}}$ is a star or a path and P P V ( P ) = V ( G ) ${\bigcup }_{P\in {\mathscr{P}}}V(P)=V(G)$ (resp. ˙ P P V ( P ) = V ( G ) ${\dot{\bigcup }}_{P\in {\mathscr{P}}}V(P)=V(G)$ ). Such two invariants are directly related concepts to the chromatic number. From the viewpoint of this fact, we focus on Ramsey-type problems for two invariants inspc $\text{inspc}$ and inspp $\text{inspp}$ , which are analogies of the Gyárfás-Sumner conjecture, and settle them. As a corollary of our results, we also settle other Ramsey-type problems for widely studied invariants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信