计算图的连接分区

IF 0.9 3区 数学 Q2 MATHEMATICS
Yair Caro, Balázs Patkós, Zsolt Tuza, Máté Vizer
{"title":"计算图的连接分区","authors":"Yair Caro,&nbsp;Balázs Patkós,&nbsp;Zsolt Tuza,&nbsp;Máté Vizer","doi":"10.1002/jgt.23127","DOIUrl":null,"url":null,"abstract":"<p>Motivated by the theorem of Győri and Lovász, we consider the following problem. For a connected graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> on <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> vertices and <span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n </mrow>\n <annotation> $m$</annotation>\n </semantics></math> edges determine the number <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>G</mi>\n <mo>,</mo>\n <mi>k</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $P(G,k)$</annotation>\n </semantics></math> of unordered solutions of positive integers <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mo>∑</mo>\n <mrow>\n <mi>i</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <mi>k</mi>\n </msubsup>\n <msub>\n <mi>m</mi>\n <mi>i</mi>\n </msub>\n <mo>=</mo>\n <mi>m</mi>\n </mrow>\n <annotation> ${\\sum }_{i=1}^{k}{m}_{i}=m$</annotation>\n </semantics></math> such that every <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>m</mi>\n <mi>i</mi>\n </msub>\n </mrow>\n <annotation> ${m}_{i}$</annotation>\n </semantics></math> is realized by a connected subgraph <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>H</mi>\n <mi>i</mi>\n </msub>\n </mrow>\n <annotation> ${H}_{i}$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>m</mi>\n <mi>i</mi>\n </msub>\n </mrow>\n <annotation> ${m}_{i}$</annotation>\n </semantics></math> edges. We also consider the vertex-partition analogue. We prove various lower bounds on <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>G</mi>\n <mo>,</mo>\n <mi>k</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $P(G,k)$</annotation>\n </semantics></math> as a function of the number <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> of vertices in <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>, as a function of the average degree <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n </mrow>\n <annotation> $d$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>, and also as the size <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <mi>M</mi>\n <msub>\n <mi>C</mi>\n <mi>r</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $CM{C}_{r}(G)$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n <mi>r</mi>\n </mrow>\n <annotation> $r$</annotation>\n </semantics></math>-partite connected maximum cuts of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>. Those three lower bounds are tight up to a multiplicative constant. We also prove that the number <span></span><math>\n <semantics>\n <mrow>\n <mi>π</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>G</mi>\n <mo>,</mo>\n <mi>k</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\pi (G,k)$</annotation>\n </semantics></math> of unordered <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-tuples with <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mo>∑</mo>\n <mrow>\n <mi>i</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <mi>k</mi>\n </msubsup>\n <msub>\n <mi>n</mi>\n <mi>i</mi>\n </msub>\n <mo>=</mo>\n <mi>n</mi>\n </mrow>\n <annotation> ${\\sum }_{i=1}^{k}{n}_{i}=n$</annotation>\n </semantics></math>, that are realizable by vertex partitions into <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math> connected parts, is at least <span></span><math>\n <semantics>\n <mrow>\n <mi>Ω</mi>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>d</mi>\n <mrow>\n <mi>k</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${\\rm{\\Omega }}({d}^{k-1})$</annotation>\n </semantics></math>.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 2","pages":"381-392"},"PeriodicalIF":0.9000,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Counting connected partitions of graphs\",\"authors\":\"Yair Caro,&nbsp;Balázs Patkós,&nbsp;Zsolt Tuza,&nbsp;Máté Vizer\",\"doi\":\"10.1002/jgt.23127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Motivated by the theorem of Győri and Lovász, we consider the following problem. For a connected graph <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> on <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math> vertices and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n <annotation> $m$</annotation>\\n </semantics></math> edges determine the number <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>P</mi>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>G</mi>\\n <mo>,</mo>\\n <mi>k</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $P(G,k)$</annotation>\\n </semantics></math> of unordered solutions of positive integers <span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mo>∑</mo>\\n <mrow>\\n <mi>i</mi>\\n <mo>=</mo>\\n <mn>1</mn>\\n </mrow>\\n <mi>k</mi>\\n </msubsup>\\n <msub>\\n <mi>m</mi>\\n <mi>i</mi>\\n </msub>\\n <mo>=</mo>\\n <mi>m</mi>\\n </mrow>\\n <annotation> ${\\\\sum }_{i=1}^{k}{m}_{i}=m$</annotation>\\n </semantics></math> such that every <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>m</mi>\\n <mi>i</mi>\\n </msub>\\n </mrow>\\n <annotation> ${m}_{i}$</annotation>\\n </semantics></math> is realized by a connected subgraph <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>H</mi>\\n <mi>i</mi>\\n </msub>\\n </mrow>\\n <annotation> ${H}_{i}$</annotation>\\n </semantics></math> of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>m</mi>\\n <mi>i</mi>\\n </msub>\\n </mrow>\\n <annotation> ${m}_{i}$</annotation>\\n </semantics></math> edges. We also consider the vertex-partition analogue. We prove various lower bounds on <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>P</mi>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>G</mi>\\n <mo>,</mo>\\n <mi>k</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $P(G,k)$</annotation>\\n </semantics></math> as a function of the number <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math> of vertices in <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math>, as a function of the average degree <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n </mrow>\\n <annotation> $d$</annotation>\\n </semantics></math> of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math>, and also as the size <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>C</mi>\\n <mi>M</mi>\\n <msub>\\n <mi>C</mi>\\n <mi>r</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>G</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $CM{C}_{r}(G)$</annotation>\\n </semantics></math> of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n <annotation> $r$</annotation>\\n </semantics></math>-partite connected maximum cuts of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math>. Those three lower bounds are tight up to a multiplicative constant. We also prove that the number <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>π</mi>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>G</mi>\\n <mo>,</mo>\\n <mi>k</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\pi (G,k)$</annotation>\\n </semantics></math> of unordered <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-tuples with <span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mo>∑</mo>\\n <mrow>\\n <mi>i</mi>\\n <mo>=</mo>\\n <mn>1</mn>\\n </mrow>\\n <mi>k</mi>\\n </msubsup>\\n <msub>\\n <mi>n</mi>\\n <mi>i</mi>\\n </msub>\\n <mo>=</mo>\\n <mi>n</mi>\\n </mrow>\\n <annotation> ${\\\\sum }_{i=1}^{k}{n}_{i}=n$</annotation>\\n </semantics></math>, that are realizable by vertex partitions into <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math> connected parts, is at least <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Ω</mi>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>d</mi>\\n <mrow>\\n <mi>k</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\rm{\\\\Omega }}({d}^{k-1})$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"107 2\",\"pages\":\"381-392\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23127\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23127","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

受 Győri 和 Lovász 的定理启发,我们考虑了以下问题。对于 n $n$ 个顶点和 m $m$ 条边的连通图 G $G$ 确定正整数无序解的个数 P ( G , k ) $P(G,k)$ ∑ i = 1 k m i = m ${\sum }_{i=1}^{k}{m}_{i}=m$ ,使得每个 m i ${m}_{i}$ 都由 G $G$ 的连通子图 H i ${H}_{i}$ 和 m i ${m}_{i}$ 条边实现。我们还考虑了顶点分区的类似方法。我们证明了 P ( G , k ) $P(G,k)$作为 G $G$ 中顶点数 n $n$ 的函数、G $G$ 的平均度 d $d$ 的函数以及 G $G$ 的 r $r$ 部分连通最大切分的大小 C M C r ( G ) $CM{C}_{r}(G)$的各种下界。这三个下界都很紧,直到一个乘法常数。我们还证明,∑ i = 1 k n i = n ${sum }_{i=1}^{k}{n}_{i}=n$ 的无序 k $k$ 图元的π ( G , k ) $\pi (G,k)$ 数目至少为 Ω ( d k - 1 ) ${\rm{\Omega }}({d}^{k-1})$ 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Counting connected partitions of graphs

Motivated by the theorem of Győri and Lovász, we consider the following problem. For a connected graph G $G$ on n $n$ vertices and m $m$ edges determine the number P ( G , k ) $P(G,k)$ of unordered solutions of positive integers i = 1 k m i = m ${\sum }_{i=1}^{k}{m}_{i}=m$ such that every m i ${m}_{i}$ is realized by a connected subgraph H i ${H}_{i}$ of G $G$ with m i ${m}_{i}$ edges. We also consider the vertex-partition analogue. We prove various lower bounds on P ( G , k ) $P(G,k)$ as a function of the number n $n$ of vertices in G $G$ , as a function of the average degree d $d$ of G $G$ , and also as the size C M C r ( G ) $CM{C}_{r}(G)$ of r $r$ -partite connected maximum cuts of G $G$ . Those three lower bounds are tight up to a multiplicative constant. We also prove that the number π ( G , k ) $\pi (G,k)$ of unordered k $k$ -tuples with i = 1 k n i = n ${\sum }_{i=1}^{k}{n}_{i}=n$ , that are realizable by vertex partitions into k $k$ connected parts, is at least Ω ( d k 1 ) ${\rm{\Omega }}({d}^{k-1})$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信