{"title":"恢复后的河堤草地的 Beta 多样性受到不受控制的时空变化的强烈影响","authors":"Markus Bauer, Jakob K. Huber, Johannes Kollmann","doi":"10.1111/jvs.13293","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aims</h3>\n \n <p>Understanding the spatio-temporal patterns of restoration outcomes is crucial to improve predictability of restoration. High beta diversity of species-rich communities is sought because it increases overall biodiversity and improves ecosystem stability and multifunctionality. For predictive restoration, it is important to identify the significance of drivers like site characteristics but also uncontrolled factors such as spatial effects, historical factors, and year effects.</p>\n </section>\n \n <section>\n \n <h3> Location</h3>\n \n <p>Dikes at river Danube, SE Germany.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We studied dike grasslands 4–19 years after restoration over five years (2017–2021, 41 plots in 12 sites). We calculated beta diversity indices to describe spatial variation and temporal turnover, including their additive components ‘replacement’ and ‘nestedness’, or ‘gains’ and ‘losses’. We analysed the main drivers of beta diversity like local site characteristics, landscape, and historical factors.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Spatial variation of the restored dike grasslands was dominated by the replacement component and showed no homogenisation despite a significant temporal turnover. The replacement drivers changed over time, although replacement was mainly affected by slope aspect and landscape factors. Historical factors were inconsistent over time, and no statistically clear drivers of nestedness were found. The dike grasslands exhibited a year-to-year turnover in species composition of 37 ± 11%. Gains and losses were balanced over time, although the ratio changed and was most pronounced on south-facing slopes.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>The restored grasslands exhibited spatial variation by site characteristics but also by spatial factors which were not controlled by restorations. Moreover, high non-directional temporal turnover occurred, caused most likely by weather fluctuations, slightly varying management, and stochastic biotic dynamics. Thus, flexible targets are recommended for restoration monitoring, by defining a set of desired states within a certain range. Furthermore, the dominance of the replacement component of spatial variation should move the focus from defining one precise restoration approach to defining a set of possible methods which together would foster beta diversity.</p>\n </section>\n </div>","PeriodicalId":49965,"journal":{"name":"Journal of Vegetation Science","volume":"35 4","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jvs.13293","citationCount":"0","resultStr":"{\"title\":\"Beta diversity of restored river dike grasslands is strongly influenced by uncontrolled spatio-temporal variability\",\"authors\":\"Markus Bauer, Jakob K. Huber, Johannes Kollmann\",\"doi\":\"10.1111/jvs.13293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Aims</h3>\\n \\n <p>Understanding the spatio-temporal patterns of restoration outcomes is crucial to improve predictability of restoration. High beta diversity of species-rich communities is sought because it increases overall biodiversity and improves ecosystem stability and multifunctionality. For predictive restoration, it is important to identify the significance of drivers like site characteristics but also uncontrolled factors such as spatial effects, historical factors, and year effects.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Location</h3>\\n \\n <p>Dikes at river Danube, SE Germany.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>We studied dike grasslands 4–19 years after restoration over five years (2017–2021, 41 plots in 12 sites). We calculated beta diversity indices to describe spatial variation and temporal turnover, including their additive components ‘replacement’ and ‘nestedness’, or ‘gains’ and ‘losses’. We analysed the main drivers of beta diversity like local site characteristics, landscape, and historical factors.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Spatial variation of the restored dike grasslands was dominated by the replacement component and showed no homogenisation despite a significant temporal turnover. The replacement drivers changed over time, although replacement was mainly affected by slope aspect and landscape factors. Historical factors were inconsistent over time, and no statistically clear drivers of nestedness were found. The dike grasslands exhibited a year-to-year turnover in species composition of 37 ± 11%. Gains and losses were balanced over time, although the ratio changed and was most pronounced on south-facing slopes.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>The restored grasslands exhibited spatial variation by site characteristics but also by spatial factors which were not controlled by restorations. Moreover, high non-directional temporal turnover occurred, caused most likely by weather fluctuations, slightly varying management, and stochastic biotic dynamics. Thus, flexible targets are recommended for restoration monitoring, by defining a set of desired states within a certain range. Furthermore, the dominance of the replacement component of spatial variation should move the focus from defining one precise restoration approach to defining a set of possible methods which together would foster beta diversity.</p>\\n </section>\\n </div>\",\"PeriodicalId\":49965,\"journal\":{\"name\":\"Journal of Vegetation Science\",\"volume\":\"35 4\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jvs.13293\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vegetation Science\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jvs.13293\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vegetation Science","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jvs.13293","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Beta diversity of restored river dike grasslands is strongly influenced by uncontrolled spatio-temporal variability
Aims
Understanding the spatio-temporal patterns of restoration outcomes is crucial to improve predictability of restoration. High beta diversity of species-rich communities is sought because it increases overall biodiversity and improves ecosystem stability and multifunctionality. For predictive restoration, it is important to identify the significance of drivers like site characteristics but also uncontrolled factors such as spatial effects, historical factors, and year effects.
Location
Dikes at river Danube, SE Germany.
Methods
We studied dike grasslands 4–19 years after restoration over five years (2017–2021, 41 plots in 12 sites). We calculated beta diversity indices to describe spatial variation and temporal turnover, including their additive components ‘replacement’ and ‘nestedness’, or ‘gains’ and ‘losses’. We analysed the main drivers of beta diversity like local site characteristics, landscape, and historical factors.
Results
Spatial variation of the restored dike grasslands was dominated by the replacement component and showed no homogenisation despite a significant temporal turnover. The replacement drivers changed over time, although replacement was mainly affected by slope aspect and landscape factors. Historical factors were inconsistent over time, and no statistically clear drivers of nestedness were found. The dike grasslands exhibited a year-to-year turnover in species composition of 37 ± 11%. Gains and losses were balanced over time, although the ratio changed and was most pronounced on south-facing slopes.
Conclusions
The restored grasslands exhibited spatial variation by site characteristics but also by spatial factors which were not controlled by restorations. Moreover, high non-directional temporal turnover occurred, caused most likely by weather fluctuations, slightly varying management, and stochastic biotic dynamics. Thus, flexible targets are recommended for restoration monitoring, by defining a set of desired states within a certain range. Furthermore, the dominance of the replacement component of spatial variation should move the focus from defining one precise restoration approach to defining a set of possible methods which together would foster beta diversity.
期刊介绍:
The Journal of Vegetation Science publishes papers on all aspects of plant community ecology, with particular emphasis on papers that develop new concepts or methods, test theory, identify general patterns, or that are otherwise likely to interest a broad international readership. Papers may focus on any aspect of vegetation science, e.g. community structure (including community assembly and plant functional types), biodiversity (including species richness and composition), spatial patterns (including plant geography and landscape ecology), temporal changes (including demography, community dynamics and palaeoecology) and processes (including ecophysiology), provided the focus is on increasing our understanding of plant communities. The Journal publishes papers on the ecology of a single species only if it plays a key role in structuring plant communities. Papers that apply ecological concepts, theories and methods to the vegetation management, conservation and restoration, and papers on vegetation survey should be directed to our associate journal, Applied Vegetation Science journal.