Kempe 等价表着色再探讨

Pub Date : 2024-06-04 DOI:10.1002/jgt.23142
Dibyayan Chakraborty, Carl Feghali, Reem Mahmoud
{"title":"Kempe 等价表着色再探讨","authors":"Dibyayan Chakraborty,&nbsp;Carl Feghali,&nbsp;Reem Mahmoud","doi":"10.1002/jgt.23142","DOIUrl":null,"url":null,"abstract":"<p>A <i>Kempe chain</i> on colors <span></span><math>\n <semantics>\n <mrow>\n <mi>a</mi>\n </mrow>\n <annotation> $a$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>b</mi>\n </mrow>\n <annotation> $b$</annotation>\n </semantics></math> is a component of the subgraph induced by colors <span></span><math>\n <semantics>\n <mrow>\n <mi>a</mi>\n </mrow>\n <annotation> $a$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>b</mi>\n </mrow>\n <annotation> $b$</annotation>\n </semantics></math>. A <i>Kempe change</i> is the operation of interchanging the colors of some Kempe chains. For a list-assignment <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n </mrow>\n <annotation> $L$</annotation>\n </semantics></math> and an <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n </mrow>\n <annotation> $L$</annotation>\n </semantics></math>-coloring <span></span><math>\n <semantics>\n <mrow>\n <mi>φ</mi>\n </mrow>\n <annotation> $\\varphi $</annotation>\n </semantics></math>, a Kempe change is <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n </mrow>\n <annotation> $L$</annotation>\n </semantics></math>-<i>valid</i> for <span></span><math>\n <semantics>\n <mrow>\n <mi>φ</mi>\n </mrow>\n <annotation> $\\varphi $</annotation>\n </semantics></math> if performing the Kempe change yields another <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n </mrow>\n <annotation> $L$</annotation>\n </semantics></math>-coloring. Two <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n </mrow>\n <annotation> $L$</annotation>\n </semantics></math>-colorings are <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n </mrow>\n <annotation> $L$</annotation>\n </semantics></math>-<i>equivalent</i> if we can form one from the other by a sequence of <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n </mrow>\n <annotation> $L$</annotation>\n </semantics></math>-valid Kempe changes. A <i>degree-assignment</i> is a list-assignment <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n </mrow>\n <annotation> $L$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>v</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <mi>d</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>v</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $L(v)\\ge d(v)$</annotation>\n </semantics></math> for every <span></span><math>\n <semantics>\n <mrow>\n <mi>v</mi>\n \n <mo>∈</mo>\n \n <mi>V</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $v\\in V(G)$</annotation>\n </semantics></math>. Cranston and Mahmoud asked: For which graphs <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> and degree-assignment <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n </mrow>\n <annotation> $L$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is it true that all the <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n </mrow>\n <annotation> $L$</annotation>\n </semantics></math>-colorings of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> are <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n </mrow>\n <annotation> $L$</annotation>\n </semantics></math>-equivalent? We prove that for every 4-connected graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> which is not complete and every degree-assignment <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n </mrow>\n <annotation> $L$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>, all <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n </mrow>\n <annotation> $L$</annotation>\n </semantics></math>-colorings of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> are <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n </mrow>\n <annotation> $L$</annotation>\n </semantics></math>-equivalent.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23142","citationCount":"0","resultStr":"{\"title\":\"Kempe equivalent list colorings revisited\",\"authors\":\"Dibyayan Chakraborty,&nbsp;Carl Feghali,&nbsp;Reem Mahmoud\",\"doi\":\"10.1002/jgt.23142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A <i>Kempe chain</i> on colors <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>a</mi>\\n </mrow>\\n <annotation> $a$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>b</mi>\\n </mrow>\\n <annotation> $b$</annotation>\\n </semantics></math> is a component of the subgraph induced by colors <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>a</mi>\\n </mrow>\\n <annotation> $a$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>b</mi>\\n </mrow>\\n <annotation> $b$</annotation>\\n </semantics></math>. A <i>Kempe change</i> is the operation of interchanging the colors of some Kempe chains. For a list-assignment <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n <annotation> $L$</annotation>\\n </semantics></math> and an <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n <annotation> $L$</annotation>\\n </semantics></math>-coloring <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>φ</mi>\\n </mrow>\\n <annotation> $\\\\varphi $</annotation>\\n </semantics></math>, a Kempe change is <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n <annotation> $L$</annotation>\\n </semantics></math>-<i>valid</i> for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>φ</mi>\\n </mrow>\\n <annotation> $\\\\varphi $</annotation>\\n </semantics></math> if performing the Kempe change yields another <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n <annotation> $L$</annotation>\\n </semantics></math>-coloring. Two <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n <annotation> $L$</annotation>\\n </semantics></math>-colorings are <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n <annotation> $L$</annotation>\\n </semantics></math>-<i>equivalent</i> if we can form one from the other by a sequence of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n <annotation> $L$</annotation>\\n </semantics></math>-valid Kempe changes. A <i>degree-assignment</i> is a list-assignment <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n <annotation> $L$</annotation>\\n </semantics></math> such that <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>L</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>v</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≥</mo>\\n \\n <mi>d</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>v</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $L(v)\\\\ge d(v)$</annotation>\\n </semantics></math> for every <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>v</mi>\\n \\n <mo>∈</mo>\\n \\n <mi>V</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $v\\\\in V(G)$</annotation>\\n </semantics></math>. Cranston and Mahmoud asked: For which graphs <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> and degree-assignment <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n <annotation> $L$</annotation>\\n </semantics></math> of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> is it true that all the <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n <annotation> $L$</annotation>\\n </semantics></math>-colorings of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> are <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n <annotation> $L$</annotation>\\n </semantics></math>-equivalent? We prove that for every 4-connected graph <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> which is not complete and every degree-assignment <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n <annotation> $L$</annotation>\\n </semantics></math> of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math>, all <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n <annotation> $L$</annotation>\\n </semantics></math>-colorings of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> are <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n <annotation> $L$</annotation>\\n </semantics></math>-equivalent.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23142\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

颜色 a $a$ 和 b $b$ 上的 Kempe 链是颜色 a $a$ 和 b $b$ 诱导的子图的一个组成部分。Kempe 变化是交换某些 Kempe 链颜色的操作。对于一个列表分配 L $L$ 和一个 L $L$ 颜色 φ $\varphi $,如果进行 Kempe 更改能得到另一个 L $L$ 颜色,则 Kempe 更改对 φ $\varphi $ 是 L $L$ 有效的。如果我们可以通过一连串 L $L$ 有效的 Kempe 变换从另一个 L $L$ 着色中得到一个 L $L$ 着色,那么这两个 L $L$ 着色就是 L $L$ 等价的。度赋值是一个列表赋值 L $L$,对于每个 v∈ V ( G ) $v\in V(G)$ 来说,L ( v ) ≥ d ( v ) $L(v)\ge d(v)$ 。克兰斯顿和马哈茂德问对于哪些图 G $G$ 和 G $G$ 的度数赋值 L $L$ 来说,G $G$ 的所有 L $L$ -着色都是 L $L$ -等价的?我们证明,对于每一个不完整的四连图 G $G$ 和 G $G$ 的每一个度数分配 L $L$, G $G$ 的所有 L $L$ -着色都是 L $L$ -等价的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Kempe equivalent list colorings revisited

分享
查看原文
Kempe equivalent list colorings revisited

A Kempe chain on colors a $a$ and b $b$ is a component of the subgraph induced by colors a $a$ and b $b$ . A Kempe change is the operation of interchanging the colors of some Kempe chains. For a list-assignment L $L$ and an L $L$ -coloring φ $\varphi $ , a Kempe change is L $L$ -valid for φ $\varphi $ if performing the Kempe change yields another L $L$ -coloring. Two L $L$ -colorings are L $L$ -equivalent if we can form one from the other by a sequence of L $L$ -valid Kempe changes. A degree-assignment is a list-assignment L $L$ such that L ( v ) d ( v ) $L(v)\ge d(v)$ for every v V ( G ) $v\in V(G)$ . Cranston and Mahmoud asked: For which graphs G $G$ and degree-assignment L $L$ of G $G$ is it true that all the L $L$ -colorings of G $G$ are L $L$ -equivalent? We prove that for every 4-connected graph G $G$ which is not complete and every degree-assignment L $L$ of G $G$ , all L $L$ -colorings of G $G$ are L $L$ -equivalent.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信