修正卡马萨-霍尔姆方程的瞬态渐近线

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Taiyang Xu, Yiling Yang, Lun Zhang
{"title":"修正卡马萨-霍尔姆方程的瞬态渐近线","authors":"Taiyang Xu,&nbsp;Yiling Yang,&nbsp;Lun Zhang","doi":"10.1112/jlms.12967","DOIUrl":null,"url":null,"abstract":"<p>We investigate long time asymptotics of the modified Camassa–Holm equation in three transition zones under a nonzero background. The first transition zone lies between the soliton region and the first oscillatory region, the second one lies between the second oscillatory region and the fast decay region, and possibly, the third one, namely, the collisionless shock region, that bridges the first transition region and the first oscillatory region. Under a low regularity condition on the initial data, we obtain Painlevé-type asymptotic formulae in the first two transition regions, while the transient asymptotics in the third region involves the Jacobi theta function. We establish our results by performing a <span></span><math>\n <semantics>\n <mover>\n <mi>∂</mi>\n <mo>¯</mo>\n </mover>\n <annotation>$\\bar{\\partial }$</annotation>\n </semantics></math> nonlinear steepest descent analysis to the associated Riemann–Hilbert problem.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transient asymptotics of the modified Camassa–Holm equation\",\"authors\":\"Taiyang Xu,&nbsp;Yiling Yang,&nbsp;Lun Zhang\",\"doi\":\"10.1112/jlms.12967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate long time asymptotics of the modified Camassa–Holm equation in three transition zones under a nonzero background. The first transition zone lies between the soliton region and the first oscillatory region, the second one lies between the second oscillatory region and the fast decay region, and possibly, the third one, namely, the collisionless shock region, that bridges the first transition region and the first oscillatory region. Under a low regularity condition on the initial data, we obtain Painlevé-type asymptotic formulae in the first two transition regions, while the transient asymptotics in the third region involves the Jacobi theta function. We establish our results by performing a <span></span><math>\\n <semantics>\\n <mover>\\n <mi>∂</mi>\\n <mo>¯</mo>\\n </mover>\\n <annotation>$\\\\bar{\\\\partial }$</annotation>\\n </semantics></math> nonlinear steepest descent analysis to the associated Riemann–Hilbert problem.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12967\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12967","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了修正的卡马萨-霍姆方程在非零背景下三个过渡区的长时间渐近性。第一个过渡区位于孤子区和第一个振荡区之间,第二个过渡区位于第二个振荡区和快速衰减区之间,第三个过渡区,即无碰撞冲击区,可能是第一个过渡区和第一个振荡区之间的桥梁。在初始数据的低正则性条件下,我们得到了前两个过渡区域的潘列韦型渐近公式,而第三个区域的瞬态渐近公式涉及雅各比 Theta 函数。我们通过对相关黎曼-希尔伯特问题进行∂ ∂ $bar\{partial }$非线性最陡下降分析来建立我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transient asymptotics of the modified Camassa–Holm equation

We investigate long time asymptotics of the modified Camassa–Holm equation in three transition zones under a nonzero background. The first transition zone lies between the soliton region and the first oscillatory region, the second one lies between the second oscillatory region and the fast decay region, and possibly, the third one, namely, the collisionless shock region, that bridges the first transition region and the first oscillatory region. Under a low regularity condition on the initial data, we obtain Painlevé-type asymptotic formulae in the first two transition regions, while the transient asymptotics in the third region involves the Jacobi theta function. We establish our results by performing a ¯ $\bar{\partial }$ nonlinear steepest descent analysis to the associated Riemann–Hilbert problem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信