Marco Salucci;Lorenzo Poli;Giorgio Gottardi;Giacomo Oliveri;Luca Tosi;Andrea Massa
{"title":"通过差分贝叶斯压缩传感实现微波无损检测/无损探伤","authors":"Marco Salucci;Lorenzo Poli;Giorgio Gottardi;Giacomo Oliveri;Luca Tosi;Andrea Massa","doi":"10.1109/OJIM.2024.3412205","DOIUrl":null,"url":null,"abstract":"This article deals with the nondestructive testing and evaluation (NDT/NDE) of dielectric structures through a sparseness-promoting probabilistic microwave imaging (MI) method. Prior information on both the unperturbed scenario and the class of imaged targets is profitably exploited to formulate the inverse scattering problem (ISP) at hand within a differential contrast source inversion (CSI) framework. The imaging process is then efficiently completed by applying a customized Bayesian compressive sensing (BCS) inversion strategy. Selected numerical and experimental results are provided to assess the effectiveness of the proposed imaging method also in comparison with competitive state-of-the-art alternatives.","PeriodicalId":100630,"journal":{"name":"IEEE Open Journal of Instrumentation and Measurement","volume":"3 ","pages":"1-15"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10552809","citationCount":"0","resultStr":"{\"title\":\"Microwave NDT/NDE Through Differential Bayesian Compressive Sensing\",\"authors\":\"Marco Salucci;Lorenzo Poli;Giorgio Gottardi;Giacomo Oliveri;Luca Tosi;Andrea Massa\",\"doi\":\"10.1109/OJIM.2024.3412205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article deals with the nondestructive testing and evaluation (NDT/NDE) of dielectric structures through a sparseness-promoting probabilistic microwave imaging (MI) method. Prior information on both the unperturbed scenario and the class of imaged targets is profitably exploited to formulate the inverse scattering problem (ISP) at hand within a differential contrast source inversion (CSI) framework. The imaging process is then efficiently completed by applying a customized Bayesian compressive sensing (BCS) inversion strategy. Selected numerical and experimental results are provided to assess the effectiveness of the proposed imaging method also in comparison with competitive state-of-the-art alternatives.\",\"PeriodicalId\":100630,\"journal\":{\"name\":\"IEEE Open Journal of Instrumentation and Measurement\",\"volume\":\"3 \",\"pages\":\"1-15\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10552809\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Instrumentation and Measurement\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10552809/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Instrumentation and Measurement","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10552809/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Microwave NDT/NDE Through Differential Bayesian Compressive Sensing
This article deals with the nondestructive testing and evaluation (NDT/NDE) of dielectric structures through a sparseness-promoting probabilistic microwave imaging (MI) method. Prior information on both the unperturbed scenario and the class of imaged targets is profitably exploited to formulate the inverse scattering problem (ISP) at hand within a differential contrast source inversion (CSI) framework. The imaging process is then efficiently completed by applying a customized Bayesian compressive sensing (BCS) inversion strategy. Selected numerical and experimental results are provided to assess the effectiveness of the proposed imaging method also in comparison with competitive state-of-the-art alternatives.