使用多 GPU 的新型并行频域有限差分算法

0 ENGINEERING, ELECTRICAL & ELECTRONIC
Yijing Wang;Xinbo He;Bin Wei
{"title":"使用多 GPU 的新型并行频域有限差分算法","authors":"Yijing Wang;Xinbo He;Bin Wei","doi":"10.1109/LMWT.2024.3414598","DOIUrl":null,"url":null,"abstract":"This letter presents a parallel frequency-domain finite-difference (FDFD) algorithm based on multi-graphic processing unit (GPU) applied to electromagnetic scattering computations to enhance the computational efficiency of the algorithm. The proposed algorithm parallelizes the solution of large-scale sparse matrices, distributing threads to the matrix-vector and vector-vector multiplication operations within decomposed sub-matrices to reduce the computational time. Moreover, we configure the OpenMP to optimize communication transfer between multiple GPUs, thereby improving computational efficiency. The simulation results show that compared with the conventional FDFD method, the proposed algorithm can enhance computational efficiency while ensuring accuracy.","PeriodicalId":73297,"journal":{"name":"IEEE microwave and wireless technology letters","volume":"34 8","pages":"971-974"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Parallel Frequency-Domain Finite-Difference Algorithm Using Multi-GPU\",\"authors\":\"Yijing Wang;Xinbo He;Bin Wei\",\"doi\":\"10.1109/LMWT.2024.3414598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter presents a parallel frequency-domain finite-difference (FDFD) algorithm based on multi-graphic processing unit (GPU) applied to electromagnetic scattering computations to enhance the computational efficiency of the algorithm. The proposed algorithm parallelizes the solution of large-scale sparse matrices, distributing threads to the matrix-vector and vector-vector multiplication operations within decomposed sub-matrices to reduce the computational time. Moreover, we configure the OpenMP to optimize communication transfer between multiple GPUs, thereby improving computational efficiency. The simulation results show that compared with the conventional FDFD method, the proposed algorithm can enhance computational efficiency while ensuring accuracy.\",\"PeriodicalId\":73297,\"journal\":{\"name\":\"IEEE microwave and wireless technology letters\",\"volume\":\"34 8\",\"pages\":\"971-974\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE microwave and wireless technology letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10570323/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE microwave and wireless technology letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10570323/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

这封信提出了一种基于多图形处理器(GPU)的并行频域有限差分(FDFD)算法,应用于电磁散射计算,以提高算法的计算效率。所提出的算法将大规模稀疏矩阵的求解并行化,将线程分配给分解子矩阵内的矩阵-向量和向量-向量乘法运算,以减少计算时间。此外,我们还配置了 OpenMP,以优化多个 GPU 之间的通信传输,从而提高计算效率。仿真结果表明,与传统的 FDFD 方法相比,所提出的算法能在保证精度的同时提高计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Parallel Frequency-Domain Finite-Difference Algorithm Using Multi-GPU
This letter presents a parallel frequency-domain finite-difference (FDFD) algorithm based on multi-graphic processing unit (GPU) applied to electromagnetic scattering computations to enhance the computational efficiency of the algorithm. The proposed algorithm parallelizes the solution of large-scale sparse matrices, distributing threads to the matrix-vector and vector-vector multiplication operations within decomposed sub-matrices to reduce the computational time. Moreover, we configure the OpenMP to optimize communication transfer between multiple GPUs, thereby improving computational efficiency. The simulation results show that compared with the conventional FDFD method, the proposed algorithm can enhance computational efficiency while ensuring accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信