{"title":"利用对数周期幂律模型和小波分析检测加密货币价格泡沫","authors":"Junhuan Zhang;Haodong Wang;Jing Chen;Anqi Liu","doi":"10.1109/TEM.2024.3427647","DOIUrl":null,"url":null,"abstract":"In this article, we establish a method to detect and formulate price bubbles in the cryptocurrency markets. This method identifies abnormal crashes through violations of the exponential decaying property. Confirmations of bubble bursts within these anomalies are obtained through wavelet analysis. By decomposing the cryptocurrency price into the high-frequency and low-frequency factors, we distinguish the price regimes versus the periods with bubbles and crashes in both time and frequency domains. In addition, we apply the log-periodic power law model to fit the bubble formation. In the analysis of eight cryptocurrencies—Bitcoin, Ethereum, Litecoin, Antshares, Ethereum Classic, Dash, Monero, and OmiseGO—from 15 May 2018 to 28 November 2022, we identify 24 bubbles. Some of them exhibit a significant and strong exponential growth pattern.","PeriodicalId":55009,"journal":{"name":"IEEE Transactions on Engineering Management","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cryptocurrency Price Bubble Detection Using Log-Periodic Power Law Model and Wavelet Analysis\",\"authors\":\"Junhuan Zhang;Haodong Wang;Jing Chen;Anqi Liu\",\"doi\":\"10.1109/TEM.2024.3427647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we establish a method to detect and formulate price bubbles in the cryptocurrency markets. This method identifies abnormal crashes through violations of the exponential decaying property. Confirmations of bubble bursts within these anomalies are obtained through wavelet analysis. By decomposing the cryptocurrency price into the high-frequency and low-frequency factors, we distinguish the price regimes versus the periods with bubbles and crashes in both time and frequency domains. In addition, we apply the log-periodic power law model to fit the bubble formation. In the analysis of eight cryptocurrencies—Bitcoin, Ethereum, Litecoin, Antshares, Ethereum Classic, Dash, Monero, and OmiseGO—from 15 May 2018 to 28 November 2022, we identify 24 bubbles. Some of them exhibit a significant and strong exponential growth pattern.\",\"PeriodicalId\":55009,\"journal\":{\"name\":\"IEEE Transactions on Engineering Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Engineering Management\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10601303/\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Engineering Management","FirstCategoryId":"91","ListUrlMain":"https://ieeexplore.ieee.org/document/10601303/","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
Cryptocurrency Price Bubble Detection Using Log-Periodic Power Law Model and Wavelet Analysis
In this article, we establish a method to detect and formulate price bubbles in the cryptocurrency markets. This method identifies abnormal crashes through violations of the exponential decaying property. Confirmations of bubble bursts within these anomalies are obtained through wavelet analysis. By decomposing the cryptocurrency price into the high-frequency and low-frequency factors, we distinguish the price regimes versus the periods with bubbles and crashes in both time and frequency domains. In addition, we apply the log-periodic power law model to fit the bubble formation. In the analysis of eight cryptocurrencies—Bitcoin, Ethereum, Litecoin, Antshares, Ethereum Classic, Dash, Monero, and OmiseGO—from 15 May 2018 to 28 November 2022, we identify 24 bubbles. Some of them exhibit a significant and strong exponential growth pattern.
期刊介绍:
Management of technical functions such as research, development, and engineering in industry, government, university, and other settings. Emphasis is on studies carried on within an organization to help in decision making or policy formation for RD&E.