{"title":"DeepLogic:通过可解释逻辑单元优先测试深度学习","authors":"Chenhao Lin;Xingliang Zhang;Chao Shen","doi":"10.23919/cje.2022.00.451","DOIUrl":null,"url":null,"abstract":"With the increasing deployment of deep learning-based systems in various scenes, it is becoming important to conduct sufficient testing and evaluation of deep learning models to improve their interpretability and robustness. Recent studies have proposed different criteria and strategies for deep neural network (DNN) testing. However, they rarely conduct effective testing on the robustness of DNN models and lack interpretability. This paper proposes a new priority testing criterion, called DeepLogic, to analyze the robustness of the DNN models from the perspective of model interpretability. We first define the neural units in DNN with the highest average activation probability as “interpretable logic units”. We analyze the changes in these units to evaluate the model's robustness by conducting adversarial attacks. After that, the interpretable logic units of the inputs are taken as context attributes, and the probability distribution of the softmax layer in the model is taken as internal attributes to establish a comprehensive test prioritization framework. The weight fusion of context and internal factors is carried out, and the test cases are sorted according to this priority. The experimental results on four popular DNN models using eight testing metrics show that our DeepLogic significantly outperforms existing state-of-the-art methods.","PeriodicalId":50701,"journal":{"name":"Chinese Journal of Electronics","volume":"33 4","pages":"948-964"},"PeriodicalIF":1.6000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10606210","citationCount":"0","resultStr":"{\"title\":\"DeepLogic: Priority Testing of Deep Learning Through Interpretable Logic Units\",\"authors\":\"Chenhao Lin;Xingliang Zhang;Chao Shen\",\"doi\":\"10.23919/cje.2022.00.451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the increasing deployment of deep learning-based systems in various scenes, it is becoming important to conduct sufficient testing and evaluation of deep learning models to improve their interpretability and robustness. Recent studies have proposed different criteria and strategies for deep neural network (DNN) testing. However, they rarely conduct effective testing on the robustness of DNN models and lack interpretability. This paper proposes a new priority testing criterion, called DeepLogic, to analyze the robustness of the DNN models from the perspective of model interpretability. We first define the neural units in DNN with the highest average activation probability as “interpretable logic units”. We analyze the changes in these units to evaluate the model's robustness by conducting adversarial attacks. After that, the interpretable logic units of the inputs are taken as context attributes, and the probability distribution of the softmax layer in the model is taken as internal attributes to establish a comprehensive test prioritization framework. The weight fusion of context and internal factors is carried out, and the test cases are sorted according to this priority. The experimental results on four popular DNN models using eight testing metrics show that our DeepLogic significantly outperforms existing state-of-the-art methods.\",\"PeriodicalId\":50701,\"journal\":{\"name\":\"Chinese Journal of Electronics\",\"volume\":\"33 4\",\"pages\":\"948-964\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10606210\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Electronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10606210/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Electronics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10606210/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
DeepLogic: Priority Testing of Deep Learning Through Interpretable Logic Units
With the increasing deployment of deep learning-based systems in various scenes, it is becoming important to conduct sufficient testing and evaluation of deep learning models to improve their interpretability and robustness. Recent studies have proposed different criteria and strategies for deep neural network (DNN) testing. However, they rarely conduct effective testing on the robustness of DNN models and lack interpretability. This paper proposes a new priority testing criterion, called DeepLogic, to analyze the robustness of the DNN models from the perspective of model interpretability. We first define the neural units in DNN with the highest average activation probability as “interpretable logic units”. We analyze the changes in these units to evaluate the model's robustness by conducting adversarial attacks. After that, the interpretable logic units of the inputs are taken as context attributes, and the probability distribution of the softmax layer in the model is taken as internal attributes to establish a comprehensive test prioritization framework. The weight fusion of context and internal factors is carried out, and the test cases are sorted according to this priority. The experimental results on four popular DNN models using eight testing metrics show that our DeepLogic significantly outperforms existing state-of-the-art methods.
期刊介绍:
CJE focuses on the emerging fields of electronics, publishing innovative and transformative research papers. Most of the papers published in CJE are from universities and research institutes, presenting their innovative research results. Both theoretical and practical contributions are encouraged, and original research papers reporting novel solutions to the hot topics in electronics are strongly recommended.