J.O. Edgar , J.A. Gould , K. Badreshany , S.P. Graham , J. Telling
{"title":"火星相关温度下的矿物磨损实验","authors":"J.O. Edgar , J.A. Gould , K. Badreshany , S.P. Graham , J. Telling","doi":"10.1016/j.icarus.2024.116238","DOIUrl":null,"url":null,"abstract":"<div><p>The aeolian transport of sand generates fine material through abrasion. On Mars this process occurs at lower temperatures than on Earth, however, there is minimal data on the effects of temperature on aeolian abrasion rates. Here, results are reported of laboratory experiments where a suite of single-phase, Mars relevant minerals (feldspar, olivine, pyroxene, quartz and opal) were exposed to conditions simulating aeolian abrasion at temperatures common to the Martian surface (193 to 293 K). Our results suggest that mineral specific differences in solid phase parameters result in non-similar changes in abrasion rates with temperature. We propose this will ultimately exert a control on the composition and reactivity of the Martian surface.</p></div>","PeriodicalId":13199,"journal":{"name":"Icarus","volume":"422 ","pages":"Article 116238"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0019103524002987/pdfft?md5=db64fdec9ae5a89389982992dec21972&pid=1-s2.0-S0019103524002987-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Mineral abrasion experiments at Mars relevant temperatures\",\"authors\":\"J.O. Edgar , J.A. Gould , K. Badreshany , S.P. Graham , J. Telling\",\"doi\":\"10.1016/j.icarus.2024.116238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The aeolian transport of sand generates fine material through abrasion. On Mars this process occurs at lower temperatures than on Earth, however, there is minimal data on the effects of temperature on aeolian abrasion rates. Here, results are reported of laboratory experiments where a suite of single-phase, Mars relevant minerals (feldspar, olivine, pyroxene, quartz and opal) were exposed to conditions simulating aeolian abrasion at temperatures common to the Martian surface (193 to 293 K). Our results suggest that mineral specific differences in solid phase parameters result in non-similar changes in abrasion rates with temperature. We propose this will ultimately exert a control on the composition and reactivity of the Martian surface.</p></div>\",\"PeriodicalId\":13199,\"journal\":{\"name\":\"Icarus\",\"volume\":\"422 \",\"pages\":\"Article 116238\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0019103524002987/pdfft?md5=db64fdec9ae5a89389982992dec21972&pid=1-s2.0-S0019103524002987-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Icarus\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019103524002987\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icarus","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019103524002987","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Mineral abrasion experiments at Mars relevant temperatures
The aeolian transport of sand generates fine material through abrasion. On Mars this process occurs at lower temperatures than on Earth, however, there is minimal data on the effects of temperature on aeolian abrasion rates. Here, results are reported of laboratory experiments where a suite of single-phase, Mars relevant minerals (feldspar, olivine, pyroxene, quartz and opal) were exposed to conditions simulating aeolian abrasion at temperatures common to the Martian surface (193 to 293 K). Our results suggest that mineral specific differences in solid phase parameters result in non-similar changes in abrasion rates with temperature. We propose this will ultimately exert a control on the composition and reactivity of the Martian surface.
期刊介绍:
Icarus is devoted to the publication of original contributions in the field of Solar System studies. Manuscripts reporting the results of new research - observational, experimental, or theoretical - concerning the astronomy, geology, meteorology, physics, chemistry, biology, and other scientific aspects of our Solar System or extrasolar systems are welcome. The journal generally does not publish papers devoted exclusively to the Sun, the Earth, celestial mechanics, meteoritics, or astrophysics. Icarus does not publish papers that provide "improved" versions of Bode''s law, or other numerical relations, without a sound physical basis. Icarus does not publish meeting announcements or general notices. Reviews, historical papers, and manuscripts describing spacecraft instrumentation may be considered, but only with prior approval of the editor. An entire issue of the journal is occasionally devoted to a single subject, usually arising from a conference on the same topic. The language of publication is English. American or British usage is accepted, but not a mixture of these.